Vol. 97
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-21
Investigation of the Effect of Bonding Points on Metal Surface-Mounted FBG Sensors for Electric Machines
By
Progress In Electromagnetics Research C, Vol. 97, 255-265, 2019
Abstract
Fibre Bragg Gratings (FBGs) offer several advantages including their immunity to electromagnetic fields making them excellent in situ sensors for feature extraction in electrical machines condition monitoring. However, the pre-requisite of bonding FBGs circumferentially on either the machine cast frame or stator windings can introduce undesired sensing characteristics. This is because the FBG relies on adhesives as the transfer medium for any sensed parameter between the machine and sensor. Whilst FBG sensors rely mainly on wavelength shift, an intolerably low signal-to-noise ratio will result in difficulty in measuring such shifts. As a complementary signature, differential optical power can be combined with wavelength shift to broaden the feature extraction capability of FBG sensors. This makes power level (dBm) an important sensing parameter for FBG sensors. The effect of varying number of bonding points on transmitted optical power is investigated using unstripped and stripped bare fibres as well as an actual FBG sensor. Increasing the number of bonding points beyond an optimum number has been observed to significantly attenuate the optical signal power level and quality for a given dynamic range. Hence, as the number of bonding points is increased, the level of attenuation should be closely monitored to ensure that the optimum number is not exceeded if excellent and accurate FBG sensing characteristics are to be realised.
Citation
Belema P. Alalibo, Wen-Ping Cao, Adenowo Gbadebo, Lassi Aarniovuori, and Kewei Cai, "Investigation of the Effect of Bonding Points on Metal Surface-Mounted FBG Sensors for Electric Machines," Progress In Electromagnetics Research C, Vol. 97, 255-265, 2019.
doi:10.2528/PIERC19080806
References

1. Hind, D., et al. "Use of optical fibres for multi-parameter monitoring in electrical AC machines," 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 208-212, Tinos, 2017.

2. ABB, FOCS applications and benefits, , 2014, [online], available: http://new.abb.com/power-electronics/focs/applications-and-benefits, [accessed: 23-Nov.-2017].

3. Regina, M., et al. "A guide to fiber bragg grating sensors," Current Trends in Short- and Long-period Fiber Gratings, InTech, 2013.

4. Marignetti, F., et al. "Fiber Bragg grating sensor for electric field measurement in the end windings of high-voltage electric machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 5, 2796-2802, May 2016.
doi:10.1109/TIE.2016.2516500

5. Mohammed, A., N. Sarma, and S. Djurovic, "Fibre optic monitoring of induction machine frame strain as a diagnostic tool," 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 1-7, Miami, FL, 2017.

6. Konforty, S., et al. "Bearing health monitoring using optical fiber sensors," European Conference of the Prognostics and Health Management Society, 1-7, Spain, 2016.

7. Jones, K., C. Staveley, and J. F. Vialla, "Condition monitoring of a subsea pump using fibre optic sensing," Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 2014.

8. Sousa, K. D. M., A. A. Hafner, H. J. Kalinowski, and J. C. C. da Silva, "Determination of temperature dynamics and mechanical and stator losses relationships in a three-phase induction motor using fiber bragg grating sensors," IEEE Sensors Journal, Vol. 12, No. 10, 3054-3061, Oct. 2012.
doi:10.1109/JSEN.2012.2210203

9. Sousa, K. M., I. Brutkowski Vieira da Costa, E. S. Maciel, J. E. Rocha, C. Martelli, and J. C. Cardozo da Silva, "Broken bar fault detection in induction motor by using optical fiber strain sensors," IEEE Sensors Journal, Vol. 17, No. 12, 3669-367, Jun. 15, 2017.
doi:10.1109/JSEN.2017.2695961

10. Vilchis-Rodriguez, D. S., S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, "Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers," 2014 International Conference on Electrical Machines (ICEM), 1772-1778, 2014.
doi:10.1109/ICELMACH.2014.6960423

11. Mohammed, A. and S. Djurovic, "Stator winding internal thermal stress monitoring and analysis using in-situ FBG sensing technology," IEEE Transactions in Energy Conversion, Vol. 33, No. 3, 1508-1518, 2018.
doi:10.1109/TEC.2018.2826229

12. Hudon, C., M. Levesque, M. Essalihi, and C. Millet, "Investigation of rotor hotspot temperature using fiber bragg gratings," 2017 IEEE Electrical Insulation Conference (EIC), 313-316, 2017.
doi:10.1109/EIC.2017.8004671

13. Liu, H., W. Chen, P. Zhang, J. Wun, and L. Liu, "Optimization for metal bonding technology of optical fiber sensor," 2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications , Vol. 8199, 819910, 2011.
doi:10.1117/12.904808

14. Picazo-Ródenas, M. J., J. Antonino-Daviu, V. Climente-Alarcon, R. Royo-Pastor, and A. Mota-Villar, "Combination of noninvasive approaches for general assessment of induction motors," IEEE Trans. Ind. Appl., Vol. 51, No. 3, 2172-2180, 2015.
doi:10.1109/TIA.2014.2382880

15. Her, S. and C. Huang, "Effect of coating on the strain transfer of optical fiber sensors," Sensors (Basel), Vol. 11, No. 7, 6926-6941, 2011.
doi:10.3390/s110706926

16. Zhang, W., W. Chen, Y. Shu, X. Lei, and X. Liu, "Effects of bonding layer on the available strain measuring range of fiber Bragg gratings," Applied Optics, Vol. 53, No. 5, 885, Feb. 2014.
doi:10.1364/AO.53.000885

17. Helminger, D., A. Daitche, and J. Roths, "Glue-induced birefringence in surface-attached FBG strain sensors," 23rd International Conference on Optical Fibre Sensors, Vol. 9157, 91577B, 2014.

18. Zhang, W., W. Chen, Y. Shu, J. Wu, and X. Lei, "Degradation of sensing properties of fiber Bragg grating strain sensors in fatigue process of bonding layers," Optical Engineering, Vol. 53, No. 4, 46102, Apr. 2014.
doi:10.1117/1.OE.53.4.046102

19. Li, W. Y., C. C. Cheng, and Y. L. Lo, "Investigation of strain transmission of surface-bonded FBGs used as strain sensors," Sensors Actuators A Physical, Vol. 149, No. 2, 201-207, Feb. 2009.
doi:10.1016/j.sna.2008.11.011

20. Wan, K., C. Leung, and N. Olson, "Investigation of the strain transfer for surface-attached optical fiber strain sensors," Smart Materialsand Structures, Vol. 17, No. 3, 35037, Jun. 2008.
doi:10.1088/0964-1726/17/3/035037

21. Wang, Q., et al. "Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings," Applied Optics, Vol. 51, No. 18, 4129, 2012.
doi:10.1364/AO.51.004129

22. Li, J., Z. Zhou, and J. Ou, "Interface strain transfer mechanism and error modification for adhered FBG strain sensor," Proceedings of Fundamental Problems of Optoelectronics and Microelectronics II, Vol. 5851, 278-287, 2005.
doi:10.1117/12.634066

23. Zhou, J., Z. Zhou, and D. Zhang, "Study on strain transfer characteristics of fiber Bragg grating sensors," Journal of Intelligent Material Systems and Structures, Vol. 21, No. 11, 1117-1122, Jul. 2010.
doi:10.1177/1045389X10375997

24. Kim, S., M. Jeong, I. Lee, I. Kwon, and T. Hwang, "Effects of mechanical and geometric properties of adhesive layer on performance of metal-coated optical fiber sensors," International Journal of Adhesion and Adhesives, Vol. 47, 1-12, Dec. 2013.
doi:10.1016/j.ijadhadh.2013.09.018

25. Cho, S., et al. "Effects of bonding layer characteristics on strain transmission and bond fatigue performance," Journal of Adhesion Science and Technology, Vol. 26, No. 10-11, 1325-1339, 2012.

26. Kwon, H., Y. Park, P. Shrestha, and C. Kim, "Signal characteristics of the surface bonded fiber Bragg grating sensors by bonding length under different load types," 2017 25th Optical Fiber Sensors Conference (OFS), 1-4, Jeju, 2017.

27. Zhang, Y., et al. "Comparison of metal-packaged and adhesive-packaged fiber Bragg grating sensors," IEEE Sensors Journal, Vol. 16, No. 15, 5958-5963, Aug. 1, 2016.
doi:10.1109/JSEN.2016.2577610

28. Cheng, C., Y. Lo, B. S. Pun, Y. M. Chang, and W. Y. Li, "An investigation of bonding-layer characteristics of substrate-bonded fiber Bragg grating," Journal of Light. Technology, Vol. 23, No. 11, 3907-3915, 2005.
doi:10.1109/JLT.2005.856235