Vol. 98
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-05
Computation of the Fields and Potentials for Particle Tracing Under the Effect of Electromagnetic Forces
By
Progress In Electromagnetics Research C, Vol. 98, 171-186, 2020
Abstract
In this work we describe a model for the computation of the scalar and vector potentials associated with known electric and magnetic fields, as well as for the inverse problem. The formulation is general, but the applications motivating our study are related to the requirements for advanced modeling of charged particle dynamics in plasma-driven electromagnetic environments. The dependence of the electromagnetic field and its potentials in space and time is assumed to be separable, where the spatial part is connected to established solutions of the static problem, and the temporal part is derived from a phenomenological description based on time-series of measurements. We benchmark our model in the simple problem of a finite current-carrying conductor, for which an analytical solution is feasible, and then present numerical results from simulations of a magnetospheric disturbance in geospace.
Citation
Christos Tsironis, "Computation of the Fields and Potentials for Particle Tracing Under the Effect of Electromagnetic Forces," Progress In Electromagnetics Research C, Vol. 98, 171-186, 2020.
doi:10.2528/PIERC19092901
References

1. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, New York, 1999.

2. Goldstein, H., Classical Mechanics, 2nd Ed., Addison-Wesley, Boston, 1980.

3. Griffiths, D. J., Introduction in Electrodynamics, 4th Ed., Addison-Wesley, Boston, 2012.

4. Parks, G. K., Physics of Space Plasmas: An Introduction, Addison-Wesley, New York, 1991.

5. Jackson, J. D., "From Lorenz to Coulomb and other explicit gauge transformations," Am. J. Phys., Vol. 70, 917-928, 2002.
doi:10.1119/1.1491265

6. Carpenter, C. J., "Electromagnetic energy and power in terms of charges and potentials instead of fields," IEE Proc. A, Vol. 136, 55-65, 1989.

7. Tsironis, C. and L. Vlahos, "Anomalous transport of magnetized electrons interacting with EC waves," Plasma Phys. Control. Fusion, Vol. 47, 131-144, 2005.
doi:10.1088/0741-3335/47/1/008

8. Anastasiadis, A., I. A. Daglis, and C. Tsironis, "Ion heating in an auroral potential structure," Astron. Astrophys., Vol. 419, 793-799, 2004.
doi:10.1051/0004-6361:20034513

9. Pulkkinen, T. I., N. A. Tsyganenko, H. Reiner, and W. Friedel, The Inner Magnetosphere: Physics and Modeling, American Geophysical Union, Washington, 2005.
doi:10.1029/GM155

10. Tsironis, C., A. Anastasiadis, C. Katsavrias, and I. A. Daglis, "Modeling of ion dynamics in the inner geospace during enhanced magnetospheric activity," Ann. Geophys., Vol. 34, 171-185, 2016.
doi:10.5194/angeo-34-171-2016

11. Arfken, G. B. and H.-J. Weber, Mathematical Methods for Physicists, 6th Ed., Academic Press, Cambridge, 2005.

12. Rostocker, G., "Geomagnetic indices," Rev. Geophys., Vol. 10, 935-950, 1972.
doi:10.1029/RG010i004p00935

13. Tsyganenko, N. A., "Data-based modelling of the Earth’s dynamic magnetosphere: A review," Ann. Geophys., Vol. 31, 1745-1772, 2013.
doi:10.5194/angeo-31-1745-2013

14. Goldston, R. J. and P. J. Rutherford, Introduction to Plasma Physics, CRC Press, Florida, 1995.
doi:10.1887/075030183X

15. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Ninth Printing), Dover Publications, New York, 1970.

16. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90, 2nd Ed., Cambridge University Press, New York, 1996.

17. Akasofu, S. I., "Energy coupling between the solar wind and the magnetosphere," Space Sci. Rev., Vol. 28, 121-190, 1981.
doi:10.1007/BF00218810

18. Russell, C. T., "The solar wind interaction with the Earth’s magnetosphere," IEEE Trans. Plasma Sci., Vol. 28, 1818-1830, 2000.
doi:10.1109/27.902211

19. Metallinou, F.-A., "Growth and decay of magnetic storms in geospace,", Ph.D. Thesis, Aristotle University of Thessaloniki, 2008.

20. Delcourt, D. C., "Particle acceleration by inductive electric fields in the inner magnetosphere," J.A.S.T.P., Vol. 64, 551-559, 2002.

21. Arykov, A. A. and Yu. P. Maltsev, "Contribution of various sources to the geomagnetic storm field," Geomag. Aeron., Vol. 33, 67-74, 1993.

22. Volland, H., "A semiempirical model of large-scale magnetospheric electric fields," J. Geophys. Res., Vol. 78, 171-180, 1973.
doi:10.1029/JA078i001p00171

23. Boyle, C. B., P. H. Reiff, and M. R. Hairston, "Empirical polar cap potentials," J. Geophys. Res., Vol. 102, 111-125, 1997.
doi:10.1029/96JA01742

24. Weimer, D. R., "Improved ionospheric electrodynamic models and application to calculating Joule heating rates," J. Geophys. Res., Vol. 110, A05306, 1997.