Vol. 101
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-30
2-d Analytical Model for Slotless Double-Sided Outer Armature Permanent-Magnet Linear Motor
By
Progress In Electromagnetics Research C, Vol. 101, 173-186, 2020
Abstract
Slotless double-sided outer armature permanent-magnet (PM) linear motors (SDOPMLs) have high efficiency and low detent force. Despite their simple control strategy and easy manufacturing process, finding an accurate model of these motors to calculate the machine quantities is challenging. It is particularly critical for obtaining the optimum design of these machines which may include too many iterations in a short time. To overcome this challenge, a 2-D analytical model based on the sub-domain method is presented to determine the magnetic flux density components for the motor under the study. According to this analytical procedure, the motor cross-section is divided to 11 sub-regions, then the superposition theorem is utilized to analyze the flux density distribution in all sub-regions due to various magnetization patterns, (i.e., parallel, two-segment Halbach, ideal Halbach, and bar magnet in shifting directions) as well as armature reaction current, respectively. According to the calculated magnetic flux density components, machine quantities like flux linkage, induced voltage, inductances and electromagnetic force components are explained. Also, the obtained analytical results are compared with those of the finite-element method (FEM) to confirm the accuracy of the proposed model. The proposed model can be used in the design and optimization stage of the linear slotless motor against the numerical model to save time. Finally, a comparative study between the performance of the single-sided and double-sided slotless PM linear motors in the same volume is implemented. This comparison shows the advantage of the double-sided motorin terms of the unbalanced magnetic force (UMF).
Citation
Alireza Ghaffari, Farzaneh Khalili, Amir Abbas Vahaj, Hamidreza Ghaffari, and Amin Mahmoudi, "2-d Analytical Model for Slotless Double-Sided Outer Armature Permanent-Magnet Linear Motor," Progress In Electromagnetics Research C, Vol. 101, 173-186, 2020.
doi:10.2528/PIERC20012105
References

1. Yan, L., J. Peng, Z. Jiao, C. Y. Chen, and I. M. Chen, "Flux field and thrust analysis of permanent magnet linear machines with isolated movers," IEEE Transaction on Magnetics, Vol. 52, No. 8, Article Number: 8203208, 2015.
doi:10.1109/TMAG.2017.2695454

2. Kim, S. A., T. U. Zhu, S. G. Lee, S. Saha, and Y. H. Cho, "Electromagnetic normal force characteristics of a permanent magnet linear synchronous motor with double primary side," IEEE Transaction on Magnetics, Vol. 50, No. 1, Article Number: 4001204, 2014.

3. Virtic, P. and B. Stumberger, "Analytical analysis of magnetic field and force calculation in a slotless-type permanent magnet linear synchronous machine; Verification with numerical analysis," Electric Machines & Drives Conference, Vol. 2, 963-968, 2017.

4. Azzouzi, J., G. Barakat, and B. Dakyo, "Quasi-3-D analytical modeling of the magnetic field of an axial flux permanent-magnet synchronous machine," IEEE Transactions on Energy Conversion, Vol. 20, No. 4, 746-752, 2005.
doi:10.1109/TEC.2005.845538

5. Guo, R., H. Yu, T. Xia, Z. Shi, W. Zhong, and X. Liu, "A simplified subdomain analytical model for the design and analysis of a tubular linear permanent magnet oscillation generator," IEEE Access, Vol. 6, 42355-42367, 2018.
doi:10.1109/ACCESS.2018.2859021

6. Kang, G. H., J. P. Hong, and G. T. Kim, "A novel design of an air-core type permanent magnet linear brushless motor by space harmonics field analysis," IEEE Transactions on Magnetics, Vol. 37, No. 5, 3732-3736, 2001.
doi:10.1109/20.952701

7. Vaez-Zadeh, S. and A. H. Isfahani, "Multiobjective design optimization of air-core linear permanent-magnet synchronous motors for improved thrust and low magnet consumption," IEEE Transactions on Magnetics, Vol. 42, No. 3, 446-452, 2006.
doi:10.1109/TMAG.2005.863084

8. Anglada, J. R., S. M. Sharkh, and M. A. Yuratich, "Calculation of rotor losses in PM machines with retaining sleeves using transfer matrices," IET Electric Power Appl., Vol. 12, No. 8, 1150-1157, 2018.
doi:10.1049/iet-epa.2017.0863

9. Vaez-Zadeh, S. and A. Isfahani, "Enhanced modeling of linear permanent-magnet synchronous motors," IEEE Transactions on Magnetics, Vol. 43, No. 1, 33-39, 2007.
doi:10.1109/TMAG.2006.886970

10. Teymoori, S., A. Rahideh, H. Moayed-Jahromi, and M. Mardaneh, "2-D analytical magnetic field prediction for consequent-pole permanent magnet synchronous machines," IEEE Transactions on Magnetics, Vol. 52, No. 6, Article Number: 8202114, 2016.

11. Guo, B., Y. Huang, F. Peng, Y. Guo, and J. Zhu, "Analytical modeling of manufacturing imperfections in double-rotor axial flux PM machines: Effects on back EMF," IEEE Transactions on Magnetics, Vol. 53, No. 6, Article Number: 7200605, 2017.

12. Ramakrishnan, K., M. Curti, D. Zarko, G. Mastinu, J. J. H. Paulides, and E. A. Lomonova, "Comparative analysis of various methods for modelling surface permanent magnet machines," IET Electric Power Applications, Vol. 11, No. 4, 540-547, 2017.
doi:10.1049/iet-epa.2016.0720

13. Dai, X., Q. Liang, J. Cao, Y. Long, J. Mo, and S. H. Wang, "Analytical modeling of axial-flux permanent magnet eddy current couplings with a slotted conductor topology," IEEE Transactions on Magnetics, Vol. 52, No. 2, Article Number: 8000315, 2016.

14. Kwon, Y. S. and W. J. Kim, "Steady-state modeling and analysis of a double-sided interior permanent-magnet flat linear brushless motor with slot-phase shift and alternate teeth windings," IEEE Transactions on Magnetics, Vol. 52, No. 11, Article Number: 8205611, 2016.

15. Yin, X., Y. Fang, X. Huang, and P. D. Pfister, "Analytical modeling of a novel vernier pseudo-direct-drive permanent-magnet machine," IEEE Transactions on Magnetics, Vol. 53, No. 6, Article Number: 7207404, 2017.

16. Liu, X., H. Hu, J. Zhao, A. Belahcen, and L. Tang, "Armature reaction field and inductance calculation of ironless BLDC motor," IEEE Transactions on Magnetics, Vol. 52, No. 2, Article Number: 8200214, 2016.

17. Kazerooni, K., A. Rahideh, and J. Aghaei, "Experimental optimal design of slotless brushless pm machines based on 2-D analytical model," IEEE Transactions on Magnetics, Vol. 52, No. 5, Article Number: 8103116, 2016.

18. Ko, Y., J. Song, M. Seo, W. Han, Y. Kim, and S. Jung, "Analytical method for overhang effect of surface-mounted permanent-magnet motor using conformal mapping," IEEE Transactions on Magnetics, Vol. 54, No. 11, Article Number: 8208005, 2018.

19. Liu, X., H. Hu, J. Zhao, A. Belahcen, L. Tang, and L. Yang, "Analytical solution of the magnetic field and EMF calculation in ironless BLDC motor," IEEE Transactions on Magnetics, Vol. 52, No. 2, Article Number: 8100510, 2016.

20. Shin, K. H., H. W. Cho, S. H. Lee, and J. Y. Choi, "Armature reaction field and inductance calculations for a permanentmagnet linear synchronous machine based on subdomain model," IEEE Transactions on Magnetics, Vol. 53, No. 6, Article Number: 8105804, 2017.

21. Brahim, L.-C., K. Boughrara, and R. Ibtiouen, "Cogging torque minimization of surface-mounted permanent magnet synchronous machines using hybrid magnet shapes," Progress In Electromagnetics Research B, Vol. 62, 49-61, 2015.

22. Zhu, Z. Q., D. Ishak, D. Howe, and J. Chen, "Unbalanced magnetic forces in permanent-magnet brushless machines with diametrically asymmetric phase windings," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1544-1553, 2007.
doi:10.1109/TIA.2007.908158

23. Yao, Y., Q. Lu, X. Huang, and Y. Ye, "Fast calculation of detent force in PM linear synchronous machines with considering magnetic saturation," IEEE Transactions on Magnetics, Vol. 53, No. 6, Article Number: 8102404, 2017.

24. Vahaj, A. A., A. Rahideh, and T. Lubin, "General analytical magnetic model for partitioned-stator flux-reversal machines with four types of magnetization patterns," IEEE Transactions on Magnetics, 2019, DOI: 10.1109/TMAG.2019.2929477.

25. Ghaffari, A., A. Rahideh, H. Moayed-Jahromi, A. A. Vahaj, A. Mahmoudi, and W. L. Soong, "2-D analytical model for outer-rotor consequent-pole brushless PM machines," IEEE Transactions on Energy Conversion, 2019, DOI: 10.1109/TEC.2019.2941935.

26. Boutora, Y., N. Takorabet, and R. Ibtiouen, "Analytical model on real geometries of magnet bars of surface permanent magnet slotless machine," Progress In Electromagnetics Research B, Vol. 66, 31-47, 2016.
doi:10.2528/PIERB15121503

27. Zhang, Y., Z. Yang, M. Yu, K. Lu, Y. Ye, and X. Liu, "Analysis and design of double-sided air core linear servo motor with trapezoidal permanent magnets," IEEE Transactions on Magnetics, Vol. 47, No. 10, 3236-3239, 2011.
doi:10.1109/TMAG.2011.2156398

28. Rahideh, A., A. Ghaffari, A. Barzegar, and A. Mahmoudi, "Analytical model of slotless brushless PM linear motors considering different magnetization patterns," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 1797-1804, 2018.
doi:10.1109/TEC.2018.2840712