Vol. 103
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-06-22
A Novel Liquid Adulteration Sensor Based on a Self Complementary Antenna
By
Progress In Electromagnetics Research C, Vol. 103, 97-110, 2020
Abstract
In this paper, a novel OLR loaded self complementary dipole antenna (OSCDA) is proposed. Open loop resonators (OLRs) are introduced into the design of a traditional self complementary dipole antenna (SCDA), to evolve it into OSCDA. The antenna is compact and has an impedance bandwidth of 1.1 GHz to 3.3 GHz with VSWR less than 2 across the frequency band. The use of the proposed antenna as a liquid sensor to detect adulteration in liquids is demonstrated from the relationship between concentration and shift in resonant frequency and variation in reflection coefficient. Variation of reflection coefficient due to change in dielectric properties is studied for different cases viz.: (i) dilution of milk with water, (ii) adulteration of coconut oil with rice bran oil, (iii) adulteration of honey with sugar syrup, and (iv) varying concentration of salt and sugar in water. When an adulterant is added to a liquid or concentration of solute in a solution varied, the dielectric properties change. This is reflected in the variation in reflection coefficient and resonant frequency. Experimental results show that the antenna has a good sensitivity to detect adulterated samples.
Citation
Jolly Rajendran, Sreedevi K. Menon, and Massimo Donelli, "A Novel Liquid Adulteration Sensor Based on a Self Complementary Antenna," Progress In Electromagnetics Research C, Vol. 103, 97-110, 2020.
doi:10.2528/PIERC20040802
References

1. Lee, C., W. Wang, B. K. Wilson, M. Connett, and M. D. Keller, "Detecting adulterants in milk with lower cost mid-infrared and raman spectroscopy," Optics and Biophotonics in Low-Resource Settings IV, Vol. 10485, 104850F, International Society for Optics and Photonics, 2018.

2. Bogdanov, S. and P. Martin, "Honey authenticity," Mitteilungen aus Lebensmitteluntersuchung und Hygiene, Vol. 93, No. 3, 232-254, 2002.

3. Mai, Z., B. Lai, M. Sun, J. Shao, and L. Guo, "Food adulteration and traceability tests using stable carbon isotope technologies," Tropical Journal of Pharmaceutical Research, Vol. 18, No. 8, 2019.

4. Cabanero, A. I., J. L. Recio, and M. Ruperez, "Liquid chromatography coupled to isotope ratio mass spectrometry: A new perspective on honey adulteration detection," Journal of Agricultural and Food Chemistry, Vol. 54, No. 26, 9719-9727, 2006.

5. Perez, R. A., C. Sanchez-Brunete, R. M. Calvo, and J. L. Tadeo, "Analysis of volatiles from spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry," Journal of Agricultural and Food Chemistry, Vol. 50, No. 9, 2633-2637, 2002.

6. Ulloa, P. A., R. Guerra, A. M. Cavaco, A. M. R. Da Costa, A. C. Figueira, and A. F. Brigas, "Determination of the botanical origin of honey by sensor fusion of impedance e-tongue and optical spectroscopy," Computers and Electronics in Agriculture, Vol. 94, 1-11, 2013.

7. Subari, N., J. M. Saleh, A. M. Shakaff, and A. Zakaria, "A hybrid sensing approach for pure and adulterated honey classification," Sensors, Vol. 12, No. 10, 14022-14040, 2012.

8. Arroyo Negrete, M. A., K. Wrobel, F. J. Acevedo Aguilar, E. Yanez Barrientos, A. R. Corrales Escobosa, and K. Wrobel, "Determination of fatty acid methyl esters in cosmetic castor oils by flow injection — electrospray ionization — high-resolution mass spectrometry," International Journal of Cosmetic Science, Vol. 40, No. 3, 295-302, 2018.

9. Escuderos, M. E., S. Sanchez, and A. Jimenez, "Quartz Crystal Microbalance (QCM) sensor arrays selection for olive oil sensory evaluation," Food Chemistry, Vol. 124, No. 3, 857-862, 2011.

10. Fang, G., J. Y. Goh, M. Tay, H. F. Lau, and S. F. Yau Li, "Characterization of oils and fats by 1 h nmr and gc/ms fingerprinting: Classification, prediction and detection of adulteration," Food Chemistry, Vol. 138, No. 2–3, 1461-1469, 2013.

11. Gan, H. L., Y. B. Che Man, C. P. Tan, I. Nor Aini, and S. A. H. Nazimah, "Characterisation of vegetable oils by surface acoustic wave sensing electronic nose," Food Chemistry, Vol. 89, No. 4, 507-518, 2005.

12. Apetrei, I. M. and C. Apetrei, "Detection of virgin olive oil adulteration using a voltammetric e-tongue," Computers and Electronics in Agriculture, Vol. 108, 148-154, 2014.

13. Chakraborti, H., S. Sinha, S. Ghosh, and S. K. Pal, "Interfacing water soluble nanomaterials with uorescence chemosensing: Graphene quantum dot to detect hg2+ in 100% aqueous solution," Materials Letters, Vol. 97, 78-80, 2013.

14. Jain, S., P. K. Mishra, V. V. Thakare, and J. Mishra, "Microstrip moisture sensor based on microstrip patch antenna," Progress In Electromagnetics Research M, Vol. 76, 177-185, 2018.

15. Fernandez-Salmeron, J., A. Rivadeneyra, M. A. Carvajal Rodrıguez, L. F. Capitan-Vallvey, and A. J. Palma, "HF RFID tag as humidity sensor: Two different approaches," IEEE Sensors Journal, Vol. 15, No. 10, 5726-5733, 2015.

16. Saadat, W., S. A. Raurale, G. A. Conway, and J. McAllister, "User identification through wearable antenna characteristics at 2.45 GHz," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.

17. Islam, M. T., M. N. Rahman, M. S. J. Singh, and M. Samsuzzaman, "Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based sensor," IEEE Access, Vol. 6, 4118-4126, 2018.

18. Salim, A. and S. Lim, "Review of recent metamaterial micro uidic sensors," Sensors, Vol. 18, No. 1, 232, 2018.

19. Lu, F., Q. Tan, Y. Ji, Q. Guo, Y. Guo, and J. Xiong, "A novel metamaterial inspired high-temperature microwave sensor in harsh environments," Sensors, Vol. 18, No. 9, 2879, 2018.

20. Bui, T. S., T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. P. Lee, T. Nagao, and C. V. Hoang, "Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules," Scientific Reports, Vol. 6, 32123, 2016.

21. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, 2013.

22. Perez, M. D., G. Thomas, S. R. M. Shah, J. Velander, N. B. Asan, P. Mathur, M. Nasir, D. Nowinski, D. Kurup, and R. Augustine, "Preliminary study on microwave sensor for bone healing follow-up after cranial surgery in newborns," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.

23. Shah, S. R. M., J. Velander, P. Mathur, M. D. Perez, N. B. Asan, D. G. Kurup, T. Blokhuis, and R. Augustine, "Penetration depth evaluation of split ring resonator sensor using in-vivo microwave reflectivity and ultrasound measurements," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.

24. Wongkasem, N. and M. Ruiz, "Multi-negative index band metamaterial-inspired microfluidic sensors," Progress In Electromagnetics Research C, Vol. 94, 29-41, 2019.

25. Rajendran, J. and S. K. Menon, "On the miniaturization of log periodic koch dipole antenna using split ring resonators," Progress In Electromagnetics Research Letters, Vol. 63, 107-113, 2016.

26. Casula, G. A., P. Maxia, G. Mazzarella, and G. Montisci, "Design of a printed log-periodic dipole array for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 38, 15-26, 2013.

27. Saurav, K., D. Sarkar, and K. V. Srivastava, "Dual-band circularly polarized cavity-backed crossed-dipole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 52-55, 2014.

28. Abdo-Sanchez, E., J. Esteban, T. M. Martin-Guerrero, C. Camacho-Penalosa, and P. S. Hall, "A novel planar log-periodic array based on the wideband complementary strip-slot element," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5572-5580, 2014.

29. Carrel, R., "The design of log-periodic dipole antennas," 1958 IRE International Convention Record, Vol. 9, 61-75, IEEE, 1966.

30. Nunes, A. C., X. Bohigas, and J. Tejada, "Dielectric study of milk for frequencies between 1 and 20 GHz," Journal of Food Engineering, Vol. 76, No. 2, 250-255, 2006.

31. Barbosa-Canovas, G. V., EOLSS: Food Engineering, United Nations Educational, 2005.

32. Chuma, E. L., Y. Iano, G. Fontgalland, and L. L. B. Roger, "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors Journal, Vol. 18, No. 24, 9978-9983, 2018.

33. Hu, L., K. Toyoda, and I. Ihara, "Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition," Journal of Food Engineering, Vol. 88, No. 2, 151-158, 2008.

34. Puranik, S., A. Kumbharkhane, and S. Mehrotra, "Dielectric properties of honey-water mixtures between 10 MHz to 10 GHz using time domain technique," Journal of Microwave Power and Electromagnetic Energy, Vol. 26, No. 4, 196-201, 1991.

35. Ahmed, J., S. T. Prabhu, G. S. V. Raghavan, and M. Ngadi, "Physico-chemical, rheological, calorimetric and dielectric behavior of selected indian honey," Journal of Food Engineering, Vol. 79, No. 4, 1207-1213, 2007.

36. Guo, W., X. Zhu, Y. Liu, and H. Zhuang, "Sugar and water contents of honey with dielectric property sensing," Journal of Food Engineering, Vol. 97, No. 2, 275-281, 2010.

37. Guo, W., Y. Liu, X. Zhu, and S. Wang, "Dielectric properties of honey adulterated with sucrose syrup," Journal of Food Engineering, Vol. 107, No. 1, 1-7, 2011.