Vol. 104
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-30
Impact of Users' Finger on the Amount and Direction of Radiated Power from a 28 GHz 4-Element MIMO Antenna Mobile Terminal
By
Progress In Electromagnetics Research C, Vol. 104, 85-97, 2020
Abstract
This paper investigates the effect of index finger position and distance on the radiated power of 4-element MIMO antenna, operating at 28 GHz. The antenna elements (AEs) are located at the top corner of the user terminal and separated at a distance of half a wavelength. Four different finger placements were investigated, one placement over each AE with six interaction distances between the AEs and the finger at each position starting from 0 up to 2.5 mm. When the finger is placed on an edge AE, the other edge AE maintained above 85 % of its free space radiated power irrespective of the interaction distance. However, the radiated power of each AE was severely affected when the finger was placed on it or on the AE adjacent to it. This effect ranged from total blockage at direct interaction with the element (with a distance of 0 mm) to maintaining more than around 60 % of free space radiated power after the interaction distance is increased to more than 2.0 mm. Besides the effects of the index finger on the amount of radiated power, this work also investigated the direction of radiated power resulting from the influence of this finger.
Citation
Ahmed Mohamed Elshirkasi, Azremi Abdullah Al-Hadi, Ping Jack Soh, Mohd Fais Mansor, Rizwan Khan, and Prayoot Akkaraekthalin, "Impact of Users' Finger on the Amount and Direction of Radiated Power from a 28 GHz 4-Element MIMO Antenna Mobile Terminal," Progress In Electromagnetics Research C, Vol. 104, 85-97, 2020.
doi:10.2528/PIERC20060107
References

1. Gupta, A. and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," IEEE Access, Vol. 3, 1206-1232, 2015.
doi:10.1109/ACCESS.2015.2461602

2. Kim, Y., et al., "Feasibility of mobile cellular communications at millimeter wave frequency," IEEE J. Sel. Top. Signal Process., Vol. 10, No. 3, 589-599, 2016.
doi:10.1109/JSTSP.2016.2520901

3. Wang, C.-X., et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Commun. Mag., Vol. 52, No. 2, 122-130, 2014.
doi:10.1109/MCOM.2014.6736752

4. Rappaport, T. S., R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter Wave Wireless Communications, Pearson Education, 2014.

5. Dehos, C., J. L. Gonzalez, A. De Domenico, D. Ktenas, and L. Dussopt, "Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems?," IEEE Commun. Mag., Vol. 52, No. 9, 88-95, 2014.
doi:10.1109/MCOM.2014.6894457

6. Giordani, M., M. Mezzavilla, and M. Zorzi, "Initial access in 5G mmWave cellular networks," IEEE Commun. Mag., Vol. 54, No. 11, 40-47, 2016.
doi:10.1109/MCOM.2016.1600193CM

7. Almasi, M. A., H. Mehrpouyan, V. Vakilian, N. Behdad, and H. Jafarkhani, "A new reconfigurable antenna MIMO architecture for mmWave communication," 2018 IEEE International Conference on Communications (ICC), 1-7, 2018.

8. Marcus, M. J., "5G and IMT for 2020 and beyond [Spectrum Policy and Regulatory Issues]," IEEE Wirel. Commun., Vol. 22, No. 4, 2-3, 2015.
doi:10.1109/MWC.2015.7224717

9. Sun, S., T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith, "Propagation models and performance evaluation for 5G millimeter-wave bands," IEEE Trans. Veh. Technol., Vol. 67, No. 9, 8422-8439, 2018.
doi:10.1109/TVT.2018.2848208

10. Samimi, M. K. and T. S. Rappaport, "3-D millimeter-wave statistical channel model for 5G wireless system design," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 7, 2207-2225, 2016.
doi:10.1109/TMTT.2016.2574851

11. Naqvi, A. H. and S. Lim, "Review of recent phased arrays for millimeter-wave wireless communication," Sensors, Vol. 18, No. 10, 3194, 2018.
doi:10.3390/s18103194

12. Liu, J., A. Vosoogh, A. U. Zaman, and J. Yang, "Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 2117-2122, 2017.
doi:10.1109/TAP.2017.2670509

13. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750

14. Ojaroudiparchin, N., M. Shen, S. Zhang, and G. F. Pedersen, "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607

15. Zhang, S., X. Chen, I. Syrytsin, and G. F. Pedersen, "A planar switchable 3-D-coverage phased array antenna and its user effects for 28-GHz mobile terminal applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6413-6421, 2017.
doi:10.1109/TAP.2017.2681463

16. Hussain, M. T., M. S. Sharawi, S. Podilchack, and Y. M. M. Antar, "Closely packed millimeter-wave MIMO antenna arrays with dielectric resonator elements," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

17. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, 2017.
doi:10.1109/TAP.2017.2722873

18. Niu, Y., Y. Li, D. Jin, L. Su, and A. V Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges," Wirel. Networks, Vol. 21, No. 8, 2657-2676, 2015.
doi:10.1007/s11276-015-0942-z

19. Zhao, K., J. Helander, D. Sjoberg, S. He, T. Bolin, and Z. Ying, "User body effect on phased array in user equipment for the 5G mmWave communication system," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 864-867, 2017.
doi:10.1109/LAWP.2016.2611674

20. Raghavan, V., et al., "Statistical blockage modeling and robustness of beamforming in millimeter-wave systems," IEEE Trans. Microw. Theory Tech., 2019.

21. Wu, T., T. S. Rappaport, and C. M. Collins, "Safe for generations to come: Considerations of safety for millimeter waves in wireless communications," IEEE Microw. Mag., Vol. 16, No. 2, 65-84, 2015.
doi:10.1109/MMM.2014.2377587

22. 3GPP T R 38.901, , Study on channel model for frequencies from 0.5 to 100 GHz, 2017.

23. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: Interactions and implications," 2015 IEEE International Conference on Communications (ICC), 2423-2429, 2015.
doi:10.1109/ICC.2015.7248688

24. Syrytsin, I., S. Zhang, G. Pedersen, K. Zhao, T. Bolin, and Z. Ying, "Statistical investigation of the user effects on mobile terminal antennas for 5G applications," IEEE Trans. Antennas Propag., 2017.

25. Syrytsin, I., S. Zhang, and G. F. Pedersen, "User impact on phased and switch diversity arrays in 5G mobile terminals," IEEE Access, Vol. 6, 1616-1623, 2018.
doi:10.1109/ACCESS.2017.2779792

26. Raghavan, V., M.-L. Chi, M. A. Tassoudji, O. H. Koymen, and J. Li, "Antenna placement and performance tradeoffs with hand blockage in millimeter wave systems," IEEE Trans. Commun., Vol. 67, No. 4, 3082-3096, 2019.
doi:10.1109/TCOMM.2019.2891669

27. Alammouri, A., J. Mo, B. L. Ng, J. C. Zhang, and J. G. Andrews, "Hand grip impact on 5G mm wave mobile devices," IEEE Access, Vol. 7, 60532-60544, 2019.
doi:10.1109/ACCESS.2019.2914685

28. Xu, B., et al., "Radiation performance analysis of 28 GHz antennas integrated in 5G mobile terminal housing," IEEE Access, Vol. 6, 48088-48101, 2018.
doi:10.1109/ACCESS.2018.2867719

29. Nguyen, T. Q. K., M. S. Miah, L. Lizzi, K. Haneda, and F. Ferrero, "Experimental evaluation of user’s finger effects on a 5G terminal antenna array at 26 GHz," IEEE Antennas Wirel. Propag. Lett., 2020.

30. Khan, R., A. A. Al-Hadi, and P. J. Soh, "Efficiency of millimeter wave mobile terminal antennas with the influence of users," Progress In Electromagnetics Research, Vol. 161, 113-123, 2018.
doi:10.2528/PIER18012409

31. Gross, F., Smart Antennas with Matlab: Principles and Applications in Wireless Communication, McGraw Hill Professional, 2015.