Vol. 106
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-14
Optimal Design Methodology for Planar Multi-Layered Radomes for Multiband Applications Using Nature Inspired Algorithm
By
Progress In Electromagnetics Research C, Vol. 106, 121-136, 2020
Abstract
An efficient nature inspired algorithm based on particle swarm optimization (PSO) is presented in this paper for the optimal design of planar multi-layered radomes for multiband applications. Material layer sequence and thickness profile are the two critical factors determining the position of pass bands in the frequency range of operation as well as the transmission performance in those bands. These design aspects have to be appropriately optimized to achieve the desired performance, and it becomes a daunting task for radome designers when a comparatively large database of suitable materials is available in the solution space. Even though commercially available software packages provide options (like particle swarm optimization (PSO), genetic algorithm (GA) etc.) for the optimization of thickness profile, they do not have the functionality for optimizing the position of a specific material inside the multi-layered radome wall configuration. In this regard, the proposed PSO-based algorithm automatically chooses suitable materials from the predefined database and optimizes the thickness for each layer, in order to achieve superior transmission in user defined pass bands. Furthermore, the superiority of the indigenously developed algorithm over the optimization techniques available in full wave simulation software (FEKO) w.r.t. accuracy and computational efficiency is also established using suitable case studies and validations. Although PSO has been used in the context of radomes, its application for the simultaneous optimization of material layer sequence and thickness profile of multi-layered radomes is not reported in literature to the best of our knowledge.
Citation
Vineetha Joy, Ambika Jose Teena, Hema Singh, and Raveendranath Nair, "Optimal Design Methodology for Planar Multi-Layered Radomes for Multiband Applications Using Nature Inspired Algorithm," Progress In Electromagnetics Research C, Vol. 106, 121-136, 2020.
doi:10.2528/PIERC20063002
References

1. Zhou, L., Y. Pei, and D. Fang, "Dual-band A --- sandwich radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 218-221, 2016.
doi:10.1109/LAWP.2015.2438552

2. Zhou, L., Y. Pei, R. Zhang, and D. Fang, "Method for design of dual-band flat radome wall structure," American Institute of Aeronautics and Astronautics Journal, Vol. 51, No. 12, 2819-2822, 2013.
doi:10.2514/1.J052428

3. Zhou, L. C., Y. M. Pei, R. B. Zhang, and D. N. Fang, "A multilayer radome wall structure with passbands having odd times of selected central frequencies," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 16, 2154-2164, 2012.
doi:10.1080/09205071.2012.728521

4. Zhou, L., Y. Pei, R. Zhang, and D. Fang, "Optimal design for high-temperature broadband radome wall with symmetrical graded porous structure," Progress In Electromagnetics Research, Vol. 127, 1-14, 2012.
doi:10.2528/PIER12030203

5. Pei, Y., A. Zeng, L. Zhou, R. Zhang, and K. Xu, "Electromagnetic optimal design for dual-band radome wall with alternating layers of staggered composite and Kagome lattice structure," Progress In Electromagnetics Research, Vol. 122, 437-452, 2012.
doi:10.2528/PIER11101906

6. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005

7. Vinisha, C. V., P. S. M. Yazeen, V. Joy, R. U. Nair, and P. Mahima, "Multi-layered graded porous radome design for dual-band airborne radar applications," Electronics Letters, Vol. 53, No. 3, 189-191, Feb. 2017.
doi:10.1049/el.2016.3229

8. Xu, G., S. V. Hum, and G. V. Eleftheriades, "A technique for designing multilayer multistopband frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 780-789, Feb. 2018.
doi:10.1109/TAP.2017.2772089

9. Xu, G., S. V. Hum, and G. V. Eleftheriades, "Systematic design ofsingle-layer multi-stop-band frequency selective surfaces," Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), 261-262, Jul. 2017.

10. Gao, M., S. M. A. M. H. Abadi, and N. Behdad, "A dual-band inductively coupled miniaturized-element frequency selective surface with higher order bandpass response," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3729-3734, Aug. 2016.
doi:10.1109/TAP.2016.2580181

11. Liu, N., X. Sheng, C. Zhang, and D. Guo, "Design of dual-band composite radome wall with high angular stability using frequency selective surface," IEEE Access, Vol. 7, 123393-123401, 2019.
doi:10.1109/ACCESS.2019.2937977

12. Yan, M., J. Wang, H. Ma, M. Feng, Y. Pang, S. Qu, J. Zhang, and L. Zheng, "A tri-band, highly selective, bandpass FSS using cascaded multilayer loop arrays," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2046-2049, May 2016.
doi:10.1109/TAP.2016.2536175

13. Ichikawa, K., Functionally Graded Materials in the 21st Century: A Workshop on Trends and Forecasts, 235, Springer, New York, USA, 2001, ISBN 978-1-4615-4373-2.
doi:10.1007/978-1-4615-4373-2

14. Mahamood, R. M. and E. T. Akinlabi, Functionally Graded Materials, 103, Springer, New York, USA, 2017, ISBN 978-3-319-53756-6.
doi:10.1007/978-3-319-53756-6

15. Kennedy, J. and W. M. Spears, "Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator," 1998 IEEE International Conference on Evolutionary Computation Proceedings, 78-83, Anchorage, AK, USA, 1998.

16. Sivakoti, K. K., M. Basava, R. V. Balaga, and B. M. Sannidhi, "Design optimization of radar absorbing materials using particle swarm optimization," International Journal of Applied Metaheuristic Computing, Vol. 8, No. 4, 113-132, 2017.
doi:10.4018/IJAMC.2017100107

17. Roy, S., S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, "Particle swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence," Progress In Electromagnetics Research B, Vol. 62, 121-135, 2015.
doi:10.2528/PIERB14122602

18. Chiba, H., K. Nishizawa, H. Miyashita, and Y. Konishi, "Optimal design of broadband radome using particle swarm optimization," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 7, No. 4, 343-349, 2012.
doi:10.1002/tee.21738

19. Lee, K.-W., I.-P. Hong, B.-J. Park, Y.-C. Chung, and J.-G. Yook, "Design of multilayer radome with particle swarm optimization," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 21, No. 7, 744-751, 2010.
doi:10.5515/KJKIEES.2010.21.7.744

20. Nguyen, T. K., I. G. Lee, O. Kwon, Y. J. Kim, and I. P. Hong, "Metaheuristic optimization techniques for an electromagnetic multilayer radome design," Journal of Electromagnetic Engineering and Science, Vol. 19, 31-36, 2019.
doi:10.26866/jees.2019.19.1.31

21. Chew, W. C., Waves and Fields in Inhomogeneous Media, 45-53, IEEE Press, New York, ISBN: 978-0-780-34749-6, 1995.

22. Balanis, C. A., Advanced Engineering Electromagnetics, 1040, John Wiley & Sons, USA, ISBN: 978-0-470-58948-9, 2012.

23. Pozar, D. M., Microwave Engineering, 39-43, John Wiley & Sons, USA, ISBN 978-0-470-63155-3, 1998.

24. Nair, R. U., S. Shashidhara, and R. M. Jha, "Novel inhomogeneous planar layer radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 854-856, 2012.
doi:10.1109/LAWP.2012.2210531

25. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, 317, Artech House, USA, ISBN: 97815969344298, 2009.

26. Rudge, A. W., K. Milne, A. D. Olver, and P. Knight, The Handbook of Antenna Design, 462-477, IET, London, ISBN o-906042-82-6, 1983.
doi:10.1049/PBEW015G

27. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

28. Zhang, Y., Z. Zhao, Z. P. Nie, and Q. H. Liu, "Optimization of graded materials for broadband radome wall with DRR control using a hybrid method," Progress In Electromagnetics Research M, Vol. 43, 193-201, 2015.
doi:10.2528/PIERM15081004

29. Potton, R. J., "Reciprocity in optics," Reports on Progress in Physics, No. 67, 717-754, 2004.
doi:10.1088/0034-4885/67/5/R03

30. Vigoureux, J. M. and R. Giust, "Explicit Stokes reciprocity relations for plane stratified media," Optics Communications, No. 176, 1-8, 2000.
doi:10.1016/S0030-4018(00)00469-7

31. Carminati, R. and M. N. Vesperinas, "Reciprocity of evanescent electromagnetic waves," Journal of the Optical Society of America A, Vol. 15, No. 3, 706-712, 1998.
doi:10.1364/JOSAA.15.000706