Vol. 106
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-28
Broadband Four Elements PIFA Array for Access-Point MIMO Systems
By
Progress In Electromagnetics Research C, Vol. 106, 163-176, 2020
Abstract
An antenna array formed by four PIFA elements located very close to each other, with low inter-element matching for MIMO applications is proposed. The antenna array consists of four F-inverted wideband radiators, with a fractional bandwidth around 56%, spaced one to each other by a very short distance (< 0.065 λ0) at a centre frequency of 2.55 GHz. The operational bandwidth goes from 1.88 to 3.15 GHz considering the Sii < -10 dB at each port. Moreover, the coupling among ports reaches values below Sij < -10 dB and getting values less than -30 dB at 1.8 GHz, just by employing an uncomplicated technique implemented by a neutralization line between elements. The antenna array gain goes from 2 dB to 6 dB over the operating bandwidth. Concerning MIMO figures of merit, the radiation pattern of each element is orthogonal to each other. The Envelope Correlation Coefficient is below 0.04 at the designed frequency, reaching a peak around 0.082 at 1.8 GHz, but still achieving the requirement for MIMO operation (less than 0.5). The Total Active Reflection Coefficient (TARC) is almost convergent at the design frequency, showing low dependence on random signals at different elements, and finally, the diversity gain reaches values close to 20 dB, making the array suitable for MIMO access point applications.
Citation
Erik Fritz-Andrade, Ricardo Gomez-Villanueva, José Alfredo Tirado-Méndez, Luis Alberto Vasquez-Toledo, Arturo Rangel-Merino, and Hildeberto Jardon-Aguilar, "Broadband Four Elements PIFA Array for Access-Point MIMO Systems," Progress In Electromagnetics Research C, Vol. 106, 163-176, 2020.
doi:10.2528/PIERC20081202
References

1. Telatar, I. E. and AT & T Bell Labs, "Capacity of multi-antenna Gaussian channels,", Tech. Rep., 1995.
doi:10.1023/A:1008889222784

2. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-335, Mar. 1998.
doi:10.1109/TAP.2004.835272

3. Jensen, M. A. and J. W. Wallace, "A review of antennas and propagation for MIMO wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2810-2824, Nov. 2004.

4. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 4, 149-172, Nov. 1987.

5. Browne, D. W., M. Manteghi, M. P. Fitz, and Y. Rahmat-Samii, "Experiments with compact antenna arrays for MIMO radio communications," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 149-172, Nov. 2006.
doi:10.1109/26.837052

6. Shiu, D. S., G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Transactions on Communications, Vol. 48, No. 3, 502-513, Mar. 2000.

7. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New Jersey, 2005.
doi:10.1109/TCOM.1973.1091578

8. Lee, W., "Effects on correlation between two mobile radio base-station antennas," IEEE Transactions on Communications, Vol. 21, No. 11, 1214-1224, Nov. 1973.
doi:10.1109/TAP.1983.1143128

9. Gupta, I. and A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, Sep. 1983.
doi:10.1109/LAWP.2002.807570

10. Janaswamy, R., "Effect of element mutual coupling on the capacity of fixed length linear arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 157-160, 2002.
doi:10.1109/TWC.2004.830854

11. Wallace, J. W. and M. A. Jensen, "Mutual coupling in MIMO wireless systems: A rigorous network theory analysis," IEEE Transactions on Wireless Communications, Vol. 3, No. 4, 1317-1325, Jul. 2004.
doi:10.1109/TVT.2004.825788

12. Waldschmidt, C., S. Schulteis, and W. Wiesbeck, "Complete RF system model for analysis of compact MIMO arrays," IEEE Transactions on Vehicular Technology, Vol. 53, No. 3, 579-586, May 2004.

13. Svantesson, T. and A. Ranheim, "Mutual coupling effects on the capacity of multielement antenna systems," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2485-2488, Salt Lake City, USA, May 7–11, 2001.
doi:10.1109/TCOM.1970.1090428

14. Lee, W. C. Y., "Mutual coupling effect on maximum-ratio diversity combiners and application to mobile radio," IEEE Transactions on Communication Technology, Vol. 18, No. 6, 779-791, Dec. 1970.
doi:10.1109/TAP.2003.817983

15. Yang, F. and Y. R. Samii, "Microstrip antennas integrated with electromagnetic band-gap EBG structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.

16. Veeramani, A., A. S. Arezomand, J. Vijayakrishnan, and F. B. Zarrabi, "Compact S-shaped EBG structures for reduction of mutual coupling," Fifth International Conference on Advanced Computing & Communication Technologies (ACCT), Haryana, India, Feb. 21–22, 2015.
doi:10.1049/iet-map:20060220

17. Diallo, A., C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals," IET Microwaves, Antennas & Propagation, Vol. 2, No. 1, 93-101, 2008.
doi:10.1109/TAP.2012.2234714

18. Peng, H., R. Tao, W. Yin, and J. Mao, "A novel compact dual-band antenna array with high isolations realized using the neutralization technique," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1956-1962, Apr. 2013.
doi:10.1109/TAP.2008.2005469

19. Chen, S., Y. Wang, and S. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3650-3658, Dec. 2008.
doi:10.1109/LAWP.2010.2040677

20. Bhatti, R. A., S. Yi, and S. Park, "Compact antenna array with port decoupling for LTE-standardized mobile phones," IEEE Antennas and Wireless Propagation Letters,, Vol. 8, 1430-1433, 2009.
doi:10.2528/PIERL13030902

21. Yu, Y., Y. Jiang, W. Feng, S. Mbayo, and S. Chen, "Compact multiport array with reduced mutual coupling," Progress In Electromagnetics Research Letters, Vol. 39, 161-168, Apr. 2013.
doi:10.1109/TAP.2013.2263277

22. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable devices in UWB applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4257-4264, Aug. 2013.

23. Arya, A. K., A. Patnaik, and M. V. Kartikeyan, "A compact array with low mutual coupling using defected ground structures," IEEE Applied Electromagnetics Conference (AEMC), Kolkata, India, Dec. 18–22, 2011.
doi:10.1109/LAWP.2012.2232274

24. Farsi, S., H. Aliakbarian, D. Schreurs, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas and Wireless Propagation Letters,, Vol. 11, 1501-1503, 2012.
doi:10.1109/TAP.2008.2005460

25. Mak, A. C. K., C. R. Rowell, and R. D. Murch, "Isolation enhancement between two closely packed antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3411-3419, Nov. 2008.
doi:10.1049/iet-map.2016.0921

26. Roshna, T. K., U. Deepak, and P. Mohanan, "Compact UWB MIMO antenna for tridirectional pattern diversity characteristics," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 2059-2065, 2017.

27. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2016.
doi:10.1109/TAP.2014.2326425

28. Zhao, L. and K. Wu, "A decoupling technique for four-element symmetric arrays with reactively loaded dummy elements," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4416-4421, Aug. 2014.
doi:10.1109/LAWP.2017.2777839

29. Boukarkar, A., X. Q. Lin, Y. Jiang, L. Y. Nie, P. Mei, and Y. Q. Yu, "A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 134-137, Jan. 2018.
doi:10.1109/TAP.2016.2593932

30. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, Oct. 2016.
doi:10.1109/TAP.2017.2780894

31. Tawk, Y., J. Costantine, and C. G. Christodoulou, "An eight-element reconfigurable diversity dipole system," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 572-581, Feb. 2018.
doi:10.1109/TMTT.2005.848105

32. Konanur, A. S., K. Gosalia, S. H. Krishnamurthy, B. Hughes, and G. Lazzi, "Increasing wireless channel capacity through MIMO systems employing co-located antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1837-1844, Jun. 2005.
doi:10.1002/mop.28049

33. Gomez-Villanueva, R., R. Linares-y-Miranda, J. A. Tirado-Mendez, and H. Jardon-Aguilar, "Very broadband PIFA antenna for mobile communications and ultrawideband services," Microwave and Optical Technology Letters, Vol. 56, No. 2, 313-316, Feb. 2014.
doi:10.1109/TAP.2006.883981

34. Diallo, A., C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3063-3074, Nov. 2006.
doi:10.2528/PIERL10100609

35. Zuo, S.-L., Y.-Z. Yin, W.-J. Wu, Z.-Y. Zhang, and J. Ma, "Investigations of reduction of mutual coupling between two planar monopoles using two λ/4 slots," Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010.
doi:10.1049/el:20030495

36. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 1, 2003.
doi:10.1002/mop.21490

37. Thaysen, J. and K. B. Jakobsen, "Envelope correlation in (N, N) MIMO antenna array from scattering parameters," Microwave and Optical Technology Letters, Vol. 48, No. 5, 832-834, May 2006.
doi:10.1002/mmce.22113

38. Fritz-Andrade, E., H. Jardon-Aguilar, and J. A. Tirado-Mendez, "The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, e22113, 2020, doi: doi.org/10.1002/mmce.22113.