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Abstract—This paper presents a simple feed-forward back-
propagation Neural Network (NN) model to detect and locate early
breast cancer/tumor efficiently through the investigation of Electro-
magnetic (EM) waves. A spherical tumor of radius 0.25 cm was cre-
ated and placed at arbitrary locations in a breast model using an EM
simulator. Directional antennas were used to transmit and receive
Ultra-Wide Band (UWB) signals in 4 to 8 GHz frequency range. Small
training and validation sets were constructed to train and test the NN.
The received signals were fed into the trained NN model to find the
presence and location of tumor. Very optimistic results (about 100%
and 94.4% presence and location detection rate of tumor respectively)
have been observed for early received signal components with the NN
model. Hence, the proposed model is very potential for early tumor
detection to save human lives in the future.

1. INTRODUCTION

Breast cancer is one of the main causes of women death [1, 2]. An early
detection of tumor existence increases the chances of overcoming the
problem. There is large number of detection methods, among them,
X-Ray mammography is currently the most widely used [2]. However,
this method suffers from high miss detection ratio which can go up to
30% [3] in addition to the damage of surrounding tissues. Another
limitation of mammography is its inability to distinguish between
malignant and benign tissues [4]. These methods are either expensive
and painful or the accuracy in terms of detection and location of the
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tumor is not satisfactory [2–4]. These limitations motivate the need for
other methods that can overcome such limitations in a cost-effective
manner. Microwave Ultra-Wide Band (UWB) imaging is currently
the most attractive method [5–10]. This method involves transmitting
UWB signals through the breast tissue and records the received signals
from different locations. As the dielectric properties of tumor differ
from healthy breast tissue, this suggests that the reflected and the
scattered signals will be different for both types of tissues [11]. There
are two main methods used in UWB [12]: (i) Microwave tomography, in
which forward and reversed electromagnetic field equations are solved
to detect the location of the tumor; (ii) Transmitting and receiving
short pulses using UWB antennas. Both of the above approaches have
some drawbacks as either they are unable to detect and locate small
tumor size or they must use large number of antennas [7, 8, 13].

To the best of our knowledge, the use of Neural Network (NN)
to detect the existence of tumor signature for UWB signals has not
been addressed in any open literature. Hence, to overcome the
aforementioned shortcomings, we present a method to build a potential
NN model for early breast tumor detection efficiently.

This paper is organized as follows. The next section presents the
breast model and data collection technique, followed by results and
discussions, and finally the conclusion of the paper.

2. BREAST MODEL AND DATA COLLECTION

Several different breast model dimensions have been used by
researchers [1, 13–16]. We have used a hemisphere shape model with
the most common dimensions as presented in Figure 1 and Table 1.

Table 1. Model parts sizes.

Model Part Size (cm)
Breast diameter 10
Breast height 6
Skin thickness 0.2
Chest thickness 2

The dielectric properties that have been used are shown in
Table 2 [14] where σ is the tissue conductivity in siemens/meter and
εr is the relative permittivity.

In the literature [2, 13, 15–20] the tumor radius size ranges from
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Figure 1. A simple breast and tumor model.

Table 2. Dielectric properties of the model components at 4 GHz.

Conductivity Permittivity
σ (S/M) εr

Skin 1.49 37.9
Fat 0.14 5.14

Chest 1.85 53.5
Tumor 1.20 50.0

0.2 cm to about 1.5 cm or more, but 0.25 cm is the mostly used one.
We have used a spherical tumor with radius 0.25 cm to compare our
results with other related works as it is more common in the literature.
Also, it is close to the minimum used tumor size. In future, we
will study the use of smaller sizes in our NN model. The dielectric
property of the tumor tissue varies with the change of frequency while
it remains almost constant for the healthy and fat tissues [15, 16, 21].
This property motivates the use of frequencies 4 and 8 GHz as center
frequencies. Frequency 4 GHz is centered between [3 to 5 GHz] and 8
is centered between [7 to 9 GHz]. To generate the data, we used the
following steps:

1) Place a pair of transmitter-receiver at opposite sides of the breast
model in a line.

2) Place a tumor at any location ‘l’ along the x-axis in the model.
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3) Transmit first a 4 GHz (center frequency) signal using plane wave
located in x -axis direction.

4) Receive the signal on the opposite side.
5) Change tumor location and repeat (2–4) a number of times.
6) The above steps were repeated for 8 GHz (center frequency).

This data generation procedure was conducted for 19 different
locations by placing the tumor along x -axis. Also, the model without
the tumor tissue was used three times to get the propagated signals
through healthy breast. The Transmitter (Tx) and Receiver (Rx) are
separated by only 10 cm (breast diameter). So, noise is negligible and
not considered here.

The emitted (transmitted) EM waves (UWB) usually travel in
3-D. Hence if there is any tumor (or scattering object) in the breast
model, the receiver must receive scattered signal in addition to normal
reception regardless of the tumor’s location. Also, in our system, the
Tx-Rx pair is rotated 360◦ for full 2-D detection and to extend the 1-D
case to 2-D. During this 360◦ rotation, the tumor (if any) should be
along the line between Tx-Rx twice (one direct and the other one is
complement (180◦ phase difference)). Hence, it is enough to train the
NN by placing the tumor along the x-axis (one dimension) only.

This experiment was repeated by placing the tumor along the y-
axis and transmitting the signals from plane facing the y-axis to get
6 different received signals for testing purposes. The same experiment
was conducted twice without placing tumor for testing too. As a result,
three groups of received signals were formed as follows:
Group (1): a set of 18 signals (16 with tumor and 2 without tumor

along x -axis) were feed into the NN model to train the model for
efficiently detecting and locating purposes.

Group (2): a set of 4 signals (3 with tumor and 1 without tumor
along x -axis) were used to validate the NN.

Group (3): a set of 8 signals (6 with tumor and 2 without tumor along
y-axis) were feed into the trained NN model to test its detection
efficiency.
The whole experiment was done for both 4 and 8GHz. The 8GHz

transmitted signal and one received UWB signal are shown in Figure 2.

3. TUMOR DETECTION USING FEED-FORWARD
NEURAL NETWORK

3.1. Detection along One Dimension (1-D)

In the received signals (Figure 2), according to EM simulator which is
CST software [22], the data points can go between 4500 to 7200 points.
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Figure 2. The 8 GHz transmitted and a corresponding received UWB
signal in electromagnetic simulator.

The signal propagation time is computed by the EM simulator. The
signature of the tumor is hidden in these data. Neural Network is
one of the best tools in such recognition application though the best
NN architecture and learning algorithm is a very difficult problem
[17, 23–27]. The most used methods to overcome this problem are
network growing and pruning techniques. These techniques depend
on expanding or shrinking the NN size until a reasonable output is
obtained [21]. We used the network growing technique and variety of
NN architectures with different learning algorithms. Due to limited
training and testing data set, we used feed-forward back-propagation
NN as it is efficient for such data sets. The NN model was implemented
in MATLAB with two hidden layers. The first layer has 20 nodes and
the second layer has 7 nodes. Only one node is needed in the output
layer since the output of the NN is the location of the tumor or ‘−1’ if
it does not exist. After many trials, we found that this NN architecture
showed the best performance for this kind of application. Figure
3 shows the NN schematic while Table 3 shows the NN MATLAB
training parameters. The used transfer function is “tansig” which has
output in the range [−1,+1]. The training function is “traingdm”
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which is gradient descent with momentum back-propagation.
For the proposed NN model, the error (E) is calculated as follows:

MSE =
1
2
Σj(tj − yj)2 (1)

where, t is the actual target, y is the net output and j is number
of output units. But for the proposed NN model, the error (E) is
calculated as follows:

E =
1
n

Σn(tn − yn) (2)

where t is the actual target, y is the net output and n is the number
of NN input samples which were generated using EM simulator. The
feature vector contains the signal data points which constitute the
patterns for the NN training. The output is the distance between the
center of the tumor and the outer surface of the skin on the x -axis
direction as shown in Figure 1. To generate pattern feature vectors we
used the following procedures:

1) Interpolate the data using “shape-preserving piecewise cubic
interpolation” to generate fixed time step.

2) Combine all data signals within 4 to 8 GHz with tumor.
3) Insert signals received when tumor is not present in the breast

model.
4) Shuffle the signal order in the feature vector for NN generalizing

purposes.
5) Generate the target vector dividing by 10 (breast diameter) to

limit the values to be less than 1. This is because the transfer
function “tansig” has output in the range [−1,+1].

Since the data points are large and the training set is small, the
problem of overfitting may arise. To solve this problem, some of the
signals were used to form a validation test data (Group 2). The training
of the NN was repeated a large number of time to reach the best results
and to overcome overfitting problems.

3.2. Detection in Two Dimension (2-D)

Referring to Figure 4, to detect the existence of a tumor in 2-D we
apply the same simulation steps as 1-D. The NN obtained in the 1-D
training step is used. Transmitter (Tx) and Receiver (Rx) are rotated
around 360◦ at 1◦ step size. For example, if the location performance
accuracy is X%, this gives (100 − X)% error, then the locating error,
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Figure 3. LThe NN model schematic.

Table 3. NN parameters used in MATLAB training.

NN parameters used in MATLAB Values
number of nodes in Input layer 750

number of nodes in Hidden layer 1 20
number of nodes in Hidden layer 2 7
number of nodes in Output layer 1

Transfer function tansig
Training function traingdm

Learning rate 0.005
Momentum constant 0.9

Maximum no. of Epochs 400000
Minimum performance gradient 1e-25
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Figure 4. Layout of 2-D detection.

er = ±(100 − X)/2. If a tumor is found at a location l when Tx and
Rx are placed at an angle θ◦, then

l =

⎧⎪⎨
⎪⎩

min(lθ2) = l
1−er

max(lθ1) = l
1+er

between them.

(3)

as shown in Figure 4. Here, lθ1 and lθ2 are the two possible distances
of tumor from Tx when Tx-Rx pair is situated at an angle θ. To
confirm the location, we would expect to find a tumor signature at
the complement distances when the Tx-Rx pair is rotated at an angle
180◦. The two ranges become:

l =

⎧⎪⎪⎨
⎪⎪⎩

min(lθ+180
2 ) =

(
d − l

1 − er

)
± er

(
d − l

1 − er

)
(4)

max(lθ+180
1 ) =

(
d − l

1 + er

)
± er

(
d − l

1 + er

)
(5)

Here, d is the diameter of the breast model. From Equations (3) and (4)
a tumor should be detected and located on the opposite side between
d(1− er)− l and d(1+ er)− l. Otherwise, there is no tumor along this
diameter at angle θ.

To test and proof Equations (3) and (4), a tumor was placed at
l = 7.5 cm with d = 10 cm. The developed NN model accuracy is
approximately 94.4% (This is presented and discussed in details in
Section 4). Using this accuracy result, er% = (100−94.4

2 )%. Form
the same l using Equations (3) and (4), a tumor can be detected in
between l2 = 2.22 cm and l1 = 2.78 cm from other side of the diameter.
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Using the NN model, we detected the same tumor at approximated
distance l = 6.8 cm. After rotating the Tx-Rx pair by 180◦, the tumor
is supposed to be detected at l = 2.5 cm as an exact location. But the
NN model has detected the tumor at l′ = 2.9 cm, where Equations (4)
and (5) give the value as l′ = 2.78 cm. The both values are very close
and hence acceptable.
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Figure 5. Three received signals in times between (a) 0.3–1 ns and
(b) 0.4–0.65 ns.
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Figure 6. Tumor detection and locating performance result for
different time segments.

4. RESULTS

The network growing technique was used to obtain the best NN size.
We have tried all possible combinations of our data signals from 4 to
8 GHz (center frequencies) with the trained NN model. The data points
of a given signal were segmented and then used. For example, data
points were segmented for the range from time duration 0.35 ns to 1 ns,
from 1 ns to 2 ns and so on. This was done for all signals to increase
the detection efficiency and accuracy. By looking (Figure 5) at the
early stage received signal value (for example 0.4–0.65 ns), a variation
in the received signals can be recognized, which contains some tumor
signature. Figure 5 shows three received signals with variations. The
best performance is obtained for the signal points in the range from
0.45 ns to about 0.6 ns. This happens due to the fact that, the direct
signal path components arrive at the receiver at an early stage which
gives pure signal reception. As time goes, the scattered and reflected
signals components caused by the tumor object are accumulated at the
receiver which causes the lately received signal not to be pure enough
to show the existence of tumor signature.

Figure 6 shows the detection accuracy of the presence of tumor
and its location by NN model. It shows that nearly full detection
rate (∼ 100%) can be achieved. The detail can be seen by looking
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at the NN output presented in Table 4. If the output is negative,
this means that there is no tumor. Table 4 confirms that for each
negative input, NN output is negative, whereas positive inputs give
positive outputs, showing its detection efficiency. Also, it shows some
variations in terms of tumor location. Tumors in radius equal to 0.2 cm
and 0.3 were correctly detected but with relatively large location errors.
This is due to the fact that the NN was not trained on different tumor
radius sizes. Table 5 shows the segmented time scale training and
validation performance of the NN model. The training, validation
and testing percentages accuracy were calculated using Equation (1)
for Groups (1), (2) and (3) signals. It can be observed that the time
segment (0.35–1 ns for 4 to 8 GHz) gives the best performance and the
three accuracy percentages were nearly equal. The average location
accuracy is nearly 94.4% for testing purposes.

Table 4. Actual tumor locations and the NN output for tumor
placed on y-axis where x -axis and z -axis are fixed at 0 and 0.25 cm
respectively.

Actual tumor location (cm/10) NN output
in EM simulator (cm/10)

0.15 0.04
−1.0 −0.97
0.43 0.41
0.70 0.50
−1.0 −0.97
0.25 0.28
0.60 0.61
0.65 0.649
0.86 0.84

The trained NN (with tumor size 0.25 cm) was tested for two other
sizes (0.2 cm and 0.3 cm) for performance verification. The NN is able
to detect the presence of tumor in both cases. But it shows relatively
higher error to find the tumor location. It exhibits higher error for
0.3 cm than 0.2 cm tumor size. For example, a tumor with radius
0.2 cm was detected by the NN at l = 7.7 cm whereas it was placed at
l = 4.5 cm.

Similar and complete performance measure was not found in
previous studies. However, it has been reported in an experimental
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Table 5. Location accuracy comparison for data different time
segments.

Data in Time 
Segments 

% Training 
Accuracy 

%Validation 
Accuracy 

% Testing 
Accuracy 

0  7 ns, 4 GHz 99.6 89.2 86.0 
0  4.3 ns, 8 GHz 99.2 93.5 92.2 
0.35  1 ns, 4 GHz 85.2 91.0 92.2 
0.35  1 ns, 8 GHz 87.1 92.3 94.6 

0.35  1 ns, 4, 8 GHz 95.4 96.8 94.4 
1  2 ns, 4, 8 GHz 90.3 90.5 92.9 
2  3 ns, 4, 8 GHz 94.1 88.4 88.7 
3  4 ns, 4, 8 GHz 99.6 91.1 87.9 
4  5 ns, 4, 8 GHz 98.5 82.1 82.5 
5  6 ns, 4, 8 GHz 98.1 90.1 85.5 
6  7 ns, 4, 8 GHz 84.7 87.4 86.0 

_

_
_
_

_
_

_
_
_
_

_

work that, a tumor at actual location of 6.5 cm was successfully located
at 6.06 cm [18]. This resulted in a relative error of 6.77% which gives
locating accuracy of 93.2%. Using the proposed NN model, a tumor
located at the same location was located with accuracy of 99.8%. This
shows 6.6% improvement of the proposed NN model (in both cases
noise is negligible).

5. CONCLUSION AND FUTURE WORKS

A feed-forward NN model is developed to identify the existence and
location of tumor tissue in a breast model. This work was successfully
done for 1-D and 2-D slice of the 3-D breast model with a tumor
size of 0.25 cm in radius. UWB signals were used to construct the
feature vector patterns for 4 to 8GHz center frequencies range. The
NN model is able to detect the presence of tumor successfully. The
detection performance could reach up to 100% showing its efficiency.
At the same time, it is able to find out the tumor location with
average accuracy 94.4%. This model shows also that early stage
received signals (0.35–1 ns) are enough to detect and locate the tumor
signature. A full 3-D breast model with variant tumor size and large
data samples is currently on-going to detect and locate the cancer in
very early stage. Discrimination between malignant and benign tissues
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is currently under investigation. More complex and realistic breast
model can also be tested using this method.
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