
Progress In Electromagnetics Research C, Vol. 37, 15–28, 2013

A MAGNETO-INDUCTIVE LINK BUDGET FOR WIRE-
LESS POWER TRANSFER AND INDUCTIVE COMMU-
NICATION SYSTEMS

Johnson I. Agbinya*

Department of Electronic Engineering, La Trobe University, Kingsbury
Drive, Bundoora, Victoria 3083, Australia

Abstract—This paper presents a propagation model and inductive
link budget based on link equations for chains of inductive loops as the
basis for determining the link budget of inductive communication and
wireless power transfer systems. The link between the transmitter and
receiver is modeled in similar format as in radio frequency systems.
The transmitter antenna gain, path loss model and receiver antenna
gain are also modeled for the inductive case. This allows the magnetic
path loss to be estimated accurately. Also the induced receiver current
due to a transmitter voltage can be computed apriori enabling efficient
design of inductive links and transceivers.

1. INTRODUCTION

A great deal of propagation models and link budget expressions exist
for radio wave propagation at different frequencies and in different
terrains. However, when it comes to inductive communication, no
propagation models and link budgets similar to Lee [1], Hata, COST
231 and Stanford University Interim (SUI) models [2] exist in current
literature. This could be mainly due to the limited research on
inductive communications to date. However, interest in magnetic
induction (MI) systems operating as wireless power transfer and
communication transceivers has increased greatly within the last few
years because of their inherent properties. Inductive systems do not
interfere with existing traditional electromagnetic wave radiators in
most bands. To their advantage magnetic induction communication
systems are also not generally affected by the environment. In fact
the only parameter in the MI power equation and link budget that
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has to do with the environment is the permeability of the materials
in the link and source (sink) which acts to enhance the received
signal. Hence the permeability of the medium can be used to
enhance the power transfer in the link. Therefore issues such as
fading, multipath propagation, interference and noise which plague
electromagnetic (EM) systems are not problems in MI communication
systems. Inductive systems are however very short range technologies
due to rapid decay with distance of the flux created by the varying
transmitter current. Applications of inductive methods have become
more and more widespread including transcutaneous systems [3],
near-field voice communications [4], wireless power transfer [5], data
transmission systems [6], underground communications [7, 8], links
and communication channels inside integrated circuits [6]. Many of
these applications use several coils to either extend the range of the
application or to deliver power more efficiently. The more coils used
the more the number of equations that must be solved to determine the
transfer function of the system. One of such applications where many
coils are used is in magneto-inductive waveguides. Magneto-inductive
waveguides have recently emerged as a method of extending the range
of MI communications systems. The pioneering works of Syms et al. [9–
14] and Kalinin et al. [15] have established some of the theories for the
MI waveguides. Recently the authors also demonstrated relaying in
MI systems [21, 22]. These systems involve arrays of coils arranged as
resonant chain networks or in multiple paths to create multipath relay
nodes. The solutions to their lumped circuit models normally involve
solving systems of simultaneous equations which are prone to mistakes
because of the number of variables and equations involved. A system
of N resonating nodes requires (N + 1) simultaneous equations to be
solved and becomes very difficult when N is large. The objective of
this paper is to propose a fast solutio method in other to simplify this
rigour.

The methods of link budgets for traditional radio frequency (RF)
communications are well established and understood. A link budget
presents a summary of how the transmitted power is spent in the
communication chain between the transmitter and receiver. System
gains are presented as positive values and losses as negative values
in decibels. Over the last couple of years attempts have been made
towards developing link budget expressions for inductive systems as
given in [15–22]. Lack of consistency in the formulations of the link
budget expressions which limits their use motivates this paper.

Inductive links to date have been developed as chain networks
in which one loop induces flux on its neighbor until the data flux
is received by the last loop to which the load is connected. Usually
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the systems have line-of-site of each other and are aligned along the
common axis of the coils. Such systems may therefore be modeled as
resonating magneto-inductive waveguides. Therefore in this paper the
analysis leading to the elegant expression for the inductive link budget
has used this approach as depicted in Figure 1. The rest of the paper is
organized as follows. Section 2 develops expressions for inductive links
using the magneto-inductive waveguide formulation. Simulations of
the links are presented in the same section. In Section 3, the magnetic
link equation is derived and used to propose a link budget expression
for low coupling applications. In Section 4, methods for assessing the
efficiency of the magnetic link are proposed with conclusions drawn in
Section 5.

2. INDUCTIVE LINKS

In its simplest form, a one section peer-to-peer magnetic field coupling
system is used for wireless power transfer and communication in the
traditional MI system with no options of range extension (Figure 1).
This model has been well analyzed and discussed by Agbinya et al. [6].
The lumped circuit model of the system is also shown in Figure 1.
An N -section waveguide extends this simple formulation by using N
resonating coils or split-ring resonators. Figure 1 shows the multiple
coil array version of the system. We assume each coil is loaded with a
capacitor to resonate and the receiver has a load ZL. The current
in each loop n is therefore In. We assume only nearest neighbor
interaction in which only currents in node n− 1 and n + 1 affect node
n. we also assume that the N nodes are resonating at frequency ω0.
Node n has impedance Zn and current In. Node n = 1 is excited with
input voltage and the rest couple magnetic fields from one to the other
until the receiver node is reached. The intermediate nodes are passive
but the receiver has load impedance ZL.

2.1. Power Relations in Inductive Links

The purpose of this section is to establish a system equation which
is repeatable and easily usable in a form similar to the propagation
equation in basic electromagnetic communications systems. To do this,
let us consider a peer-to-peer inductive communication consisting of
two loops, a transmitter and receiver loops. The governing equations
for the system (Figure 1) are:

Z1I1 + jωM12I2 = Us (1)

Z2I2 + jωM12I1 = 0 Mij = kij

√
LiLj 0 ≤ kij ≤ 1 (2)
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Figure 1. MI communication system.

where the transmitter and receiver loop impedances are Z1 and Z2

with currents flowing through them as I1 and I2 respectively. The
mutual inductance and the coupling coefficient between them written
in general terms are Mij and kij respectively (i = 1, j = 2). Let the
transmitter parameters have index ‘1’ and index ‘2’ be reserved for the
receiver variables. The impedances Z ′2 refer to the influences of the
transmitter on the receiver and of the receiver on the transmitter Z ′1.

The voltage developed across the receiver load due to inductive
action is given by the expression

VL = I2ZL (3)

where in general for a system consisting of multiple intermediate (or
relay) nodes each loop impedance is

Zn = Rn + jωLn +
1

jωCn
(4)

The impedance of the receiver when the load impedance is considered
is

Zr = R2 + jωL2 +
1

jωC2
+ ZL (5)

By solving Equations (1) to (5) simultaneously, the ratio of the load
voltage to that of the source is given by the expression:

Gv =
VL

US
=

−jωM12ZL

ω2M2
12 + Z1Z2

(6)

The gain function Gv relates the input voltage (US) to the voltage VL

developed across the receiver load ZL. It relates the system parameters
for the transmitter and receiver including the link between them. This
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expression may also be written in terms of the current induced in the
receiver coil as:

Gv (ω) =
IL

US
=

−jωM12

ω2M2
12 + Z1Z2

(7)

where IL = I2 = VL/ZL = GvUS . The power delivered to the receiver
load is the product I2

LZL = I2I
∗
2ZL.

2.1.1. Approximate Wireless Power Transfer Equation for a Link

Equation (7) is a simple case because it involves solving only three
equations but once the number of loops increase and for N loops
(N + 1) equations are required, solving the equations to obtain Gv(ω)
becomes a lot more difficult and time consuming. A preferred approach
is to develop a link equation which relates multiple loops in terms
of the input transmitter voltage to the inductive current flowing
through the load impedance. Let the quality factors of the transmitter
and receiver coils be Q1 = ωL1/R1; Q2= ωL2/R2 and replacing the
mutual inductance with an equivalent expression containing the quality
factors, the expression for the inductive system gain at resonance
becomes

IL

US
=

−jk12
√

Q1Q2√
R1R2

(
k2

12Q1Q2 + 1
) (8)

At low coupling and small quality factors (Q), the inequalities
k2

12Q1Q2 ¿ 1 or k2
12 ¿ 1/Q1Q2 hold. Therefore the inductive transfer

function at resonance reduces to.∣∣∣∣
IL

US

∣∣∣∣ =
k12
√

Q1Q2√
R1R2

=
kij

√
QiQj√

RiRj

(9)

We have simulated Equations (8) and (9) in Matlab. Figures 2(a) and
(b) show the simulation for the low coupling approximation when the
two coils have identical Q = 2 and Q = 10 respectively and k = 0.1.
The approximation is very accurate for low k and low Q but starts to
deviate for higher Q. Figure 2(c) shows the variation of the transfer
function with Q and plotted as a function of the logarithm of the
magnitude of the numerator of Equation (8). Using the horizontal
axis from these figures, it is apparent that the approximation is valid
at high Q when the numerator is nearly equal to the denominator.
Very high Q causes a deviation from the general solution.

2.1.2. Approximate Wireless Power Transfer Link Equations

The use of multiple inductive loops (Figure 4) in a chain network
is more popular than the simple two loops system. Increasing the
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Figure 2. Compared transfer functions with/without approximation
(N = 2). (a) Compared transfer function at low Q (red curve is
with approximation; blue curve has no approximation. (b) Compared
transfer function at high Q, with approximation (read curve); without
approximation (blue curve). (c) Variation of transfer function with Q.

number of loops is used to improve the power transfer efficiency and
for extending the communication range. Consider a three node system
with the following Kirchhoff voltage law (KVL) equations:

Z1I1 + jωM12I2 = Us

Z2I2 + jωM12I1 + jωM23I3 = 0
Z3I3 + jωM23I2 = 0
VL = I3ZL

(10)

Solving the simultaneous Equation (10) results to the expression:

VL

US
=

ω2M12M23ZL

ω2
(
M2

12Z3 + M2
23Z1

)
+ Z1Z2Z3

(11)
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(a) (b)

Figure 3. Power transfer functions with approximation (N = 3). (a)
Power transfer function when Q = 2; Red = approximation; Blue =
no approximation. (b) Power transfer function when Q = 10; Red =
approximation; Blue = no approximation.

Figure 4. Magnetic waveguide and its circuit model.

At resonance this equation can be simplified and becomes

IL

US
=

k12k23Q2
√

Q1Q3√
R1R3

[
1 + k2

12Q1Q2 + k2
23Q2Q3

] (12)

As in Equation (8), we consider low coupling when k2
12Q1Q2 +

k2
23Q2Q3 ¿ 1 or Q2 ¿ 1/

(
k2

12Q1 + k2
23Q3

)
and writing kij = ki,j the
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low coupling transfer function becomes

∣∣∣∣
IL

US

∣∣∣∣ =
k12k23Q2

√
Q1Q3√

R1R3
=

√
Q1QN

N−1∏
i=1

ki,i+1

N−2∏
i=1

Qi+1

√
R1RN

(13)

To demonstrate the effectiveness of the approximations, simulations
were undertaken using Matlab. Equation (12) the case for no
approximation and Equation (13) with approximation were used. The
red lines in Figure 3 show the case when no approximations were used.
The blue curves are results with approximation. The approximation
for k = 0.1 and Q = 2 is held at N = 3 with slight deviations only for
higher Q = 10. High Q values are normally used in wireless power
transfer systems and the higher the Q the more the deviations in
the curves shown in Figure 3. These approximations are therefore
more suited to low Q systems as in inductive communications. A
correction term (k2

12Q1Q2) should be used in the denominator of
Equation (13) to reduce the deviation at high Q. The correction
changes the denominator to

√
R1R3

(
1 + k2

12Q1Q2

)
.

We extend the system one more time to demonstrate the concept
further for N = 4. In this case the system of equations is

Z1I1 + jωM12I2 = Us

Z2I2 + jωM12I1 + jωM23I3 = 0
Z3I3 + jωM23I2 + jωM34I4 = 0
Z4I4 + jωM34I3 = 0
VL = I4ZL

(14)

This has the solution
VL

US
=

jω3M12M23M34ZL

Z1Z2Z3Z4 + ω4M2
12M

2
34 + ω2

(
M2

12Z3Z4 + M2
23Z1Z4

+M2
34Z1Z2

) (15)

At resonance it reduces to∣∣∣∣
IL

US

∣∣∣∣ =
Q2Q3k12k23k34

√
Q1Q4

√
R1R4

[
1 +

(
k2

12Q1Q+k2
23Q2Q3 + k2

34Q3Q4

)
+k2

12k
2
34Q1Q2Q3Q4

] (16)

The low coupling approximation when N = 4 with t(k2
12Q1Q2 +

k2
23Q2Q3 +k2

34Q3Q4) + k2
12k

2
34Q1Q2Q3Q4 ¿ 1 is

∣∣∣∣
IL

US

∣∣∣∣ =
k12k23k34Q2Q3

√
Q1Q4√

R1R4
=

√
Q1Q4

3∏
i=1

ki,i+1

2∏
i=1

Qi+1

√
R1R4

(17)
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Normally even when the loops are arranged equidistant from each
other, the strongest coupling is between the first and second loop
with coefficient k12 and the rest of the coefficients become smaller and
smaller towards the receiver.

To accommodate for high coupling situations as in wireless power
transfer, correction terms may also be progressively added to the
denominator of Equation (17).

3. INDUCTIVE LINK EQUATION

The performance of an inductive system is conditioned upon reducing
losses in the transmitter, the receiver and the channel. Both the
receiver and transmitter suffer from resistive losses. The previous
section has provided the basis for assessing the performance of the
inductive link. Losses in the transmitter and receiver will be discussed
at the end of this section. From Equations (9), (13) and (17) a
general link equation for N loops in a chain can be derived using the
low coupling approximation and nearest neighbor interaction. Using
Equations (9), (13) and (17) we can show that the link equation and
hence the link efficiency ηTR is given by the following expression

ηTR =
∣∣∣∣
IL

US

∣∣∣∣ =

√
Q1QN

N−1∏
i=1

ki,i+1

N−2∏
i=1

Qi+1

√
R1RN

(18)

This is a general expression which holds for all N , provided the
approximations are made in the denominators for the solutions to
the simultaneous KVL equations. Equation (18) represents a general
simplification of the link equation when multiple loops are involved.
To use the equation, it is required that the number of loops N be
selected including the electrical dimensions of each loop. The electrical
dimensions include the radius ri of each loop, number of turns N , the
resistance of each loop Ri, the distance between the loops l which
are then used to compute the quality factors of the loops. Then
select the excitation voltage US and the load impedance. The load
could be a sensor or a device being driven by the array of inductive
loops. Therefore the link budget equation for the induced load voltage
VL = ILZL is proportional to the square of the voltage across the load
impedance and is given in decibels for N loops as:

VL (dB) = 20 log10 US + 10 log10 (Q1QN ) + 20
N−1∑

i=1

log10 (ki,i+1)
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+20
N−2∑

i=1

log10 (Qi+1)− 10 log10 (R1RN ) (19a)

Generally ki,i+1 ¿ 1. Therefore the third term in Equation (19a) is
negative and the equation is written in decibels as

VL (dB) = US (dB) + Q1N (dB)− ki,i+1 (dB)
+Qi+1 (dB)−R1N (dB) (19b)

We have used a minus sign following the tradition in RF systems
for using negative sign for the path loss model. This is because the
individual coupling coefficients are less that one. Note that the index
variations for the coupling coefficients ki,i+1, 1 ≤ i ≤ N − 1 and for
the quality factors Q, 1 ≤ i ≤ N − 2.

What do Equations (19a) and (19b) represent in terms of wireless
power transfer and communication using inductive nodes? By defining
Q as the gain of a node, the general equation has the following
interpretation as in traditional RF systems. The product

√
Q1QN

is the gain of the transmitter and receiver stages. This is similar to the
product of the transmitter and receiver antenna gains in RF systems.

The quantity
N−2∏
i=1

Qi+1 is the product of the gains of the intermediate

or relay stages. This is also similar to the product of the gains of the

intermediate stages in a transponder system. The term
N−1∏
i=1

ki,i+1 is

the path loss of the general magnetic channel. Thus we model the
overall system of N resonating inductive loops as in Figure 5.

The resistors R1 and RN are the inherent Ohmic losses of
the transmitter and receiver stages. The inductive system has a

channel with path loss (gain) equal to Gc =
N−1∏
i=1

ki,i+1

N−2∏
i=1

Qi+1.

If as in transcutaneous systems applications or in embedded
biomedical systems when biological tissues are part and parcel of the
channel between the transmitter and receiver, and if the biological
channel has impedance Zb, the channel gain is modified to Gc =

Zb

N−1∏
i=1

ki,i+1

N−2∏
i=1

Qi+1 and the channel becomes a function of frequency

and leads to further coupling losses between the transmitter and
receiver. Most importantly, Equations (19a) and (19b) may be used
to estimate the various system parameters during the design process
to enable a required inductive current in the receiver load of the Nth
loop.

Consider as an example an inductive waveguide link system
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Figure 5. Peer-to-peer inductive communication system.

Table 1. Inductive link parameters.

Parameter Value dB

US 10 volts 20

Q1 = QN 10 20

Qi+1 10 40

R1 = RN 1.6Ω −4.08

N 4

parameters of four sections (N = 4) as in Table 1. What would the
receiver voltage be with various values of the coupling coefficients?

From Equation (19b), the link budget equation reduces to

VL (dB) = 75.92− 20
N−1∑

i=1

log10 (ki,i+1) = 75.92− ki,i+1 (dB) (20)

ki,i+1 (dB) = 20
N−1∑
i=1

log10 (ki,i+1). This link budget equation places

emphasis on the coupling coefficients of the individual sections of the
link. From Equation (20) when N = 4, considering low coupling
case with sections of equal length and identical coils resonating at
the same frequency, the load voltage in decibels is found. Let ki,i+1 =
10−3; 1 ≤ i ≤ 3 the receiver voltage is (−104.08) dB or 6.25 µV.
When ki,i+1 = 10−1; 1 ≤ i ≤ 3, the receiver voltage is approximately
6.25 volts. Therefore the link Equations (19a) to (20) provide easy
method of computing the required system variables. The constant
75.92 in Equation (20) will be slightly higher for large Q systems.

3.1. Link Budget with TX and RX Losses

In general the power transfer efficiency of an inductive system contains
three distinct factors. These are the losses in the transmitter antenna
and the losses in the receiver antenna. Hence the link equations also
should include these losses in the transmitter and receiver circuits.
Given a transmitter source resistance RS , transmitter inductor wire
resistance R1, receiver inductor resistance RN and load resistance RL,



26 Agbinya

the transmitter efficiency is ηT and the receiver efficiency is ηR. Hence
the the overall system link efficiency is,

η = ηT ηTRηR;

{
ηT = RS

RS+R1

ηR = RL
RL+RN

(21)

With this correction, the link Equations (19a) to (20) need to be
modified to include these terms. Since ηT < 1 and ηR < 1, the overall
system link budget expression is obtained by modifying Equation (19b)
to be:

VL (dB) = −ηT + US (dB) + Q1N (dB)− ki,i+1 (dB) + Qi+1 (dB)
−R1N (dB)− ηR (22)

The two new terms are marginal corrections which should be
implemented to account for the resistive losses in the transmitter and
receiver coils.

3.2. Correction Terms
As in RF propagation models and link budgets, progressive correction
terms may be added to the denominator of the transfer function
equation and hence to the link budget equation in decibels. These
corrections apply for high Q when only the first loop is excited
with input voltage at frequency ω. For example, when N = 2 the
correction term is k2

12Q1Q2. When N = 3, there are two terms
k2

12Q1Q2+k2
23Q2Q3 that could be used for corrections and are functions

of k2
12 and k2

23. If the nodes are distributed evenly in a chain network
so that the distance between nodes is constant x, then k2

23 < k2
12 and

to improve upon the approximation the term k2
12Q1Q2 may be added

as correction. For N > 3, progressive corrections may be made for
higher k(Q) based on adding terms in k2

ij where i, and j are integers.

4. CONCLUSIONS

We have developed an accurate expression for link budgets of inductive
systems. The algorithm presented enables accurate estimation of
inductive loop system gains. They could be used for designing
and assessing the performances of embedded biomedical data and
wireless power transfer, personal area networks and communications
underground. The link budget applies for all N and eliminates the
need to solve a large system of equations, provided the coupling
coefficients and the quality factors of the loops are computed and
known. Progressive corrections to account for larger k and Q can
be made for large k and Q applications.
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