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Abstract—This paper addresses the problem of direction-of-arrival
(DOA) estimation of correlated and coherent signals, and two sparsity-
inducing methods are proposed. In the first method named L1-EVD,
the signal-subspace eigenvectors are represented jointly with well-
chosen hard thresholds attached to the representation residue of each
eigenvector. Then only the eigenvector corresponding to the largest
eigenvalue is reserved for DOA estimation via sparse representation,
which aims at highly correlated signals, and a method named L1-
TEVD (TEVD: Truncated EVD) is proposed. Simulation results show
that L1-EVD and L1-TEVD both surpass L1-SVD in DOA estimation
performance and computation efficiency for highly correlated and
coherent signals.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation techniques have been frequently
used in many applications involving electromagnetic, acoustic, seismic
sensing, etc. [1–5]. When the incident signals are highly correlated
or coherent, the performance of conventional high-resolution DOA
estimation methods [6–10] will deteriorate significantly [11]. Spatial
smoothing [12] provides a way to make up for such drawback in those
methods, but it adapts only to arrays with special geometries and
sacrifices some array aperture.

The recently interest-attracting technique of sparse representation
provides a new perspective for DOA estimation [13]. The sparsity-
inducing methods seek a trade-off between minimal fitting error of the
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data and model parsimony, and they succeed to detect the incident
signal number and estimate their directions simultaneously.

Several sparsity-inducing DOA estimation methods have been
proposed in the past decade. The first estimator, as far as we
know, is the Global Matched Filter (GMF) of Fuchs that bases on
the beamspace samples [14], but it only adapts to uniform circular
arrays. Malioutov et al. then proposed the method of L1-SVD to
address the general DOA estimation problem [15]. L1-SVD first
decomposes the array output and extracts the signal energy into
K (the signal number) singular-vectors, and then represents them
under sparsity constraint to estimate the signal directions. L1-SVD
contributes much to the development of the sparsity-inducing DOA
estimation techniques, and it also adapts well to signal correlation.
For correlated signals, although the borderline between the signal-
and noise-subspaces becomes vague, most of the signal energy is
still contained in the signal-subspace eigenvectors, so L1-SVD shows
satisfying adaptation to signal correlation [15, 16]. More recently,
Hyder and Mahata introduced their joint sparsity-enforcing technique
to DOA estimation, and proposed the method of JLZA-DOA [17].
JLZA-DOA uses a family of Gaussian functions to approach the
canonical but NP hard `0-norm sparsity penalty, but as the Gaussian
parameters are tune subjectively, the method is not guaranteed to
global convergence [18]. Zhang et al. cast the problem of localization
of narrow band sources in the presence of mutual coupling into
the framework of sparse solution finding. The proposed alternating
minimization technique is applicable for noise free covariance matrix
as well as the observation data, where single snapshot and multiple
snapshots can both be used [19]. But its computational cost is very
high due to the dimension of its model.

In this paper, we address the problem of DOA estimation for
multiple correlated or coherent signals, and two methods, named
L1-EVD and L1-TEVD (TEVD: Truncated EVD), will be proposed.
Those two methods realize DOA estimation by sparsely representing
all the eigenvectors within the signal-subspace, or just the eigenvector
corresponding to the largest eigenvalue. The essential character that
distinguishes L1-EVD and L1-TEVD from L1-SVD is that the former
two ground on the eigenvectors with unattached thresholds, while the
latter one grounds on the singular-vectors with associated threshold.
Such difference helps L1-EVD and L1-TEVD to surpass L1-SVD in
DOA estimation of highly correlated and coherent signals, with the
reason given in Sections 2 and 3, and verified in Section 4. L1-TEVD
is just a simplified version of L1-EVD by retaining only the eigenvector
corresponding to the largest eigenvalue, aiming at the application to
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highly correlated and adjacent signals. The simplification is validated
as this eigenvector contains most signal energy when the correlation is
significant.

The rest of this paper mainly consists of four parts. Section 2
reviews the array output model and existing DOA estimation methods.
Section 3 presents the methods of L1-EVD and L1-TEVD. Section 4
carries out simulations to demonstrate the performance of the newly
proposed methods. Section 5 concludes the whole paper.

2. PROBLEM FORMULATION

Suppose that K narrowband Gaussian signals impinge onto an M -
element array from directions of θ1, . . . , θK , respectively, N snapshots
are collected by the array receiver, and the snapshot at the nth time
instant is given by

x(n) = A (θ) s(n) + v(n), (1)

where θ = [θ1, . . . , θK ], A(θ) = [a(θ1), . . . ,a(θK)] is the responding
matrix of the K signals, s(n) is the signal waveform, and v(n) is the
additive noise with variance σ2

v .
To obtain the signal directions from X = [x(1), . . . ,x(N)],

conventional subspace based methods [9] first estimate the covariance
matrix as follows,

R̂ =
1
N

XXH , (2)

and then eigen-decompose it to estimate the signal-subspace Ûs and
noise-subspace Ûv,

R̂ =
[

Ûs Ûv

]
Λ̂

[
Ûs Ûv

]H
, (3)

where Λ̂ is a diagonal matrix with the M degressive eigenvalues on its
diagonal. Finally, an orthogonality-testing process between the array
manifold and noise-subspace is carried out for DOA estimation,

θ̂ = arg max
θ

1∥∥∥aH (θ) Ûv

∥∥∥
2

2

. (4)

If the incident signals are highly correlated or completely coherent,
the noise-subspace estimate may be biased, and the DOA estimates
derived from (4) deteriorate in precision.

Sparsity-inducing methods estimate the signal directions by
representing the observation under sparsity constraint. Take L1-
SVD [15] for example, it first decomposes the array output to extract
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the signal information,

X = W1ΣWH
2 , (5)

where W1 and W2 are the left and right singular matrices, and Σ is a
diagonal matrix consisting of the singular-values. If the incident signal
number is assumed known, the first K singular-vectors in (5) (i.e., the
signal-subspace) are retained to form a new observation matrix Y,

Y = XW2DK
∆= [y1, . . . ,yK ] , (6)

where DK =
[

IK

0

]H

. In this procedure, the singular-vectors are

weighted according to the singular-values.
Then an overcomplete spatial dictionary Ā = [{a(θ)}θ∈Θ] is

formed on the possible signal direction set Θ, under the assumption
that each vector in Y is a noisy weighted sum of only a few atoms
in Ā, i.e., yk = Ās̄(k) + vy(k), where s̄(k) owns non-zero values
only at indexes corresponding to the signal directions, and vy(k)
is the representation residue. Based on the spatially overcomplete
formulation of Y, one can solve the following BPDN (Basis Pursuit
DeNoising) problem [20] for DOA estimation,

(L1-SVD) min
∥∥Y − ĀS̄

∥∥2

F
+ τ

∥∥∥s̄(`2)
∥∥∥

1
, (7)

where τ is the regularization factor, S̄ = [̄s(1), . . . , s̄(K)], and s̄(`2) =
[̄s(`2)

θ |θ∈Θ], s̄(`2)
θ = ‖s̄θ(1), . . . , s̄θ(K)‖2, with s̄θ(k) being the value of

s̄(k) at direction θ. The symbol ‖ · ‖1 denotes the `1 norm of a vector,
and ‖·‖F denotes the Frobenius norm of a matrix. The above objective
function can also be rewritten in the following constrained form [21],

min
∥∥∥s̄(`2)

∥∥∥
1
, subject to

∥∥Y − ĀS̄
∥∥2

F
≤ ξ, (8)

where ξ is the fitting-error threshold between Y and the representation
model ĀS̄.

As the snapshots are limited in practical applications, the singular-
vector estimates are not completely accurate and show different
estimation precision, and the optimality of the observation matrix
obtained following (6) is not guaranteed. Malioutov himself also
discovered that weighting the singular-vectors with the eigenvalues
instead of the singular-values helped to improve the performance of
L1-SVD [13]. However, both those two groups of weighting factors are
selected empirically, and no theoretical result is available to support
such selection. In addition, a particular regularization factor τk can
be determined for each yk according to the L-curve criterion [22]. But
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as different singular-vectors are of different energy and precision, the
optimal τk’s for them are probably different, so there is a trade-off
between those τk’s when choosing overall τ in (7). If the incident
signals are spatially much adjacent and temporally highly correlated,
the energy and precision diversities between different singular-vectors
is much more significant, which makes optimal tuning of the free
parameters even more difficult and leads to performance deterioration
when using the jointly penalized objective functions of (7) and (8).

3. L1-EVD AND L1-TEVD METHODS

In order to avoid the trade-off during regularization factor selection
in L1-SVD, and inheriting the superiority of the sparsity-inducing
methods over conventional ones at the same time, we turn to the
idea of sparsely representing the eigenvectors for DOA estimation. In-
depth eigen-analysis will be carried out to select fitting-error thresholds
for each eigenvector, resulting in a method named L1-EVD. When
the incident signals are highly correlated and spatially adjacent, the
energy of the array output will flock together in a subspace of only one
dimension of the incident signals, thus we only retain and represent
the eigenvector corresponding to the largest eigenvalue for DOA
estimation, resulting in the method of L1-TEVD (TEVD: Truncated
EVD).

3.1. L1-EVD

If no perturbation error is contaminated in the covariance matrix
estimate R̂, the signal-subspace estimate Us is a linear transformation
of the responding matrix of the incident signals, i.e.,

Us = A (θ)Q, (9)

where Q is the reformulation matrix. Denote the kth eigenvector
(corresponding to the kth largest eigenvalue as default) by uk, the
kth column of Q by qk, then the following equality holds,

uk = A (θ)qk. (10)

Thus uk also has a sparse representation on Ā, i.e., uk = Āq̄k, where
q̄k has non-zero values only at indexes corresponding to the signal
directions. In practice, the signal-subspace estimate is perturbation-
contaminated due to limited snapshots, which is denoted by

ûk = Āq̄k + εk. (11)

In this paper, we use the BPDN model to sparsely representing the
ûk’s for DOA estimation, and the fitting-error constrained objective
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function for each eigenvector is
min ‖q̄k‖0 subject to

∥∥ûk − Āq̄k

∥∥
2
≤ βk, (12)

where βk is the fitting-error threshold that depends on the variance of
εk.

Solving (12) straightforwardly is a NP-hard problem [23], and the
`0-norm can be approximated by the `1-norm to make the objective
function convex and globally convergent, thus (12) is transformed to
the following form,

min ‖q̄k‖1 subject to
∥∥ûk − Āq̄k

∥∥
2
≤ βk. (13)

In order to make sufficient use of the signal energy contained in the
signal-subspace, all the K eigenvectors should be represented jointly,
which can be realized with joint `2,1-norm function, thus resulting in
the objective function of L1-EVD, i.e.,

(L1-EVD)
min ‖q̄‖1 subject to q̄(θ) ≥ ‖q̄1(θ), . . . , q̄K(θ)‖2 ,
and

∥∥ûk−Āq̄k

∥∥
2
≤ βk, k = 1, . . . , K,

(14)

where q̄k (θ) is the value of q̄k at direction θ, and the first constraint
is introduced to force joint sparsity on the representations of different
eigenvectors. In (14), unattached thresholds are set for the fitting error
of the K eigenvectors separately, thus evading possible performance
deterioration during the selection of trade-off regularization factor in
L1-SVD. The locations of the non-zero values in the solution to (14),
denoted by ˆ̄q, corresponds to the signal directions. The performance
of the solution to L1-EVD depends heavily on the optimization of
the thresholds β1, . . . , βK . We carry out an in-depth analysis on the
eigenvector perturbation for the threshold selection in the following
subsection.

3.2. Fitting-error Threshold Selection

Denote the estimation error of the covariance matrix by R̃ = R̂ −
R, and make a first-order approximation of the eigenvectors before
normalization as follows [24],

^ui ' ui +
M∑

m=1
m6=i

ci,mum, i = 1, . . . , M. (15)

Eq. (15) holds because the vector set [u1, . . . ,uM ] spans the whole
space of CM . Straightforward derivations can be carried out to
conclude that [24],

ci,m =
uH

mR̃ui

λm − λi
, m 6= i, (16)
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where λm is the mth largest eigenvalue of R. Eq. (16) indicates
that |ci,m| ¿ 1 when the number of snapshots is adequate. Then
the ith eigenvector ûi can be derived by normalizing ^ui, which is
approximately given as follows by neglecting the higher-than-second-
order terms,

ûi =
(∥∥∥^ui

∥∥∥
2

)−1
^ui '


1− 1

2

M∑

m=1
m6=i

|ci,m|2




ui +

M∑

m=1
m6=i

ci,mum


 . (17)

Equation (17) shows that each eigenvector estimate is a weighted
sum of all the M perturbation-free eigenvectors. As the first K
eigenvectors are contained in the signal-subspace, only the dispersion
from the noise-subspace eigenvectors contributes to the representation
error of them. Denote the deviation of the kth (k = 1, . . . , K)
eigenvector from the observation model Āq̄ by εk, it can be expressed
as follows approximately by keeping only the first-order terms,

εk '
M∑

m=K+1

ck,mum, k = 1, . . . , K. (18)

The variance of εk is

‖εk‖2
2 '

M∑

m=K+1

|ck,m|2 '
M∑

m=K+1

(
uH

mR̃uk

)(
uH

k R̃um

)

(λk − λm)2
,

k = 1, . . . , K. (19)
For k ∈ {1, . . . ,K} and m ∈ {K + 1, . . . ,M}, the following

equality holds,

uH
mR̃uk = uH

mR̂uk =
1
N

N∑

n=1

uH
mx(n)xH(n)uk. (20)

When N is adequately large, uH
mR̃uk is approximately Gaussian

distributed according to the law of large numbers. Moreover, as
λK+1 = . . . = λM = σ2

v and the noise-subspace eigenvectors are
identically correlated with the additive noise, one can conclude that
uH

m1
R̃uk and uH

m2
R̃uk have equal variances for m1 6= m2, and k ∈

{1, . . . , K}, m1, m2 ∈ {K + 1, . . . ,M}. Denote the variance of uH
mR̃uk

for all m ∈ {K + 1, . . . ,M} by γ2
k , then (λk−σ2

v)2

γ2
k

‖εk‖2
2 is χ2-distributed

with freedom M −K.
The distribution of ‖εk‖2

2 should be exploited during threshold-
selection in (14) to guarantee a certain detection probability. Define
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µk = (λk−σ2
v)2

γ2
k

‖εk‖2
2 ∼ χ2(M −K), then we should set µk ≤ µk(α) =

χ2
α(M −K) (the upper α fractile of χ2(M −K)) to decrease the false

detection probability to a very low level of α, such as 0.01. The
corresponding constraint threshold for ‖εk‖2

2 is

‖εk‖2
2 ≤

γ2
k

(λk − σ2
v)

2 χ2
α (M −K) . (21)

The final determination of the above threshold requires the value of
the variance γ2

k . We give two lemmas first for the calculation of it in
the following.

Lemma 1: Assume that the incident signals and additive noise
are zero-mean and independent Gaussian processes, and denote the
estimation error of the covariance matrix by R̃, then it holds that [25],

E
(
R̃ikR̃lm

)
=

1
N

RimRlk, (22)

where E (·) stands for the expectation of a random variable, R̃ik and
Rik are the (i, k)th element of R̃ and R, respectively.

Lemma 2: Under the same assumption as Lemma 1, the
following equality holds for R̃ and four randomly chosen M×1 vectors
α1, α2, α3, α4 [25],

E
[(

αH
1 R̃α2

)(
αH

3 R̃α4

)]
=

1
N

(
αH

1 Rα4

) (
αH

3 Rα2

)
.

Lemma 1 and 2 are given in [25] as exercises. In the Appendix,
we provide a brief proof for Lemma 1, and Lemma 2 can be concluded
with further straightforward derivation.

Based on Lemma 2, the variance γ2
k can be calculated as follows,

γ2
k = E

[(
uH

mR̃uk

)(
uH

mR̃uk

)H
]

=
1
N

(
uH

mRum

) (
uH

k Ruk

)
=

λkσ
2
v

N
,

m ∈ {K + 1, . . . , M} . (23)

Substituting (23) into (21) yields a mathematically tractable constraint
for the eigenvector perturbations,

‖εk‖2
2 ≤

λkσ
2
v

N (λk − σ2
v)

2 χ2
α (M −K) ∆= β2

k, k ∈ {1, . . . , K} . (24)

Hence, the fitting-error thresholds in (14) can be derived from (24) as

βk ≤
[

λkσ
2
v

N (λk − σ2
v)

2 χ2
α (M −K)

] 1
2

, k ∈ {1, . . . , K} . (25)
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In practical applications, λk (k = 1, . . . ,K) can be approximated

by λ̂k (k = 1, . . . ,K), and σ2
v can be approximated by 1

M−K

M∑
m=K+1

λ̂m

in (25) to calculate βk for different k. Finally, those thresholds are
substituted in (14) to form the L1-EVD objective function and estimate
q̄. Many computational methods are available for solving (14) [26], and
we choose the toolbox of SeDuMi to realize this process for convenience.

3.3. L1-TEVD

As the DOA estimation of well-separated sources has been solved
by existing methods perfectly, we mainly focus on the scenarios of
spatially adjacent and temporally correlated signals in this paper.
Under such settings, the eigenvalues obtained from (3) attenuates
rapidly, thus the first eigenvector contains most of the signal energy.
The perturbation variance of the eigenvectors given in (24) also
indicates that the precision of the eigenvector estimates deteriorates
synchronously. Therefore, simple abnegation of the second to Kth
eigenvectors will not loss much signal energy. Contrarily, obvious
improvements in at least three aspects can be gained from such
abnegation when compared to L1-SVD. First, the reconstruction model
of (14) can be greatly simplified, thus saving much computation load.
Second, no weighting vector is required for multiple eigenvectors. Last,
the selection of the threshold becomes more convenient.

Bases on those superiorities derived from such abnegation, we
propose a simplified version of L1-EVD, named L1-TEVD, as follows,

(L1-TEVD) min ‖q̄1‖1 subject to
∥∥û1 − Āq̄1

∥∥
2
≤ β1, (26)

where the threshold β1 is given by (25), and the toolbox of SeDuMi is
used to solve (26).

The validation of using L1-TEVD for DOA estimation depends on
various factors, including the angular distance and correlation degree
between the incident signals, we leave the analysis to the following
section via simulations.

4. SIMULATION RESULTS

In this section, we carry out simulations to demonstrate the
performance of L1-EVD and L1-TEVD in various scenarios, and
compare them with existing methods.

Suppose that two equal-power signals impinge onto an 8-element
uniform linear array (ULA) simultaneously, and the ULA is inter-
spaced by half-wavelength. The [−90◦ 90◦] space is divided into



46 Sha et al.

1◦ intervals when forming the dictionary Ā (further grid refinement
procedure [15] can be introduced to improve the estimation precision).
The upper fractile of the χ2 distribution is set to α = 0.01 when
calculating the thresholds for L1-EVD and L1-TEVD with (25). The
additive noise is zero-mean and independent Gaussian process. The
performance of different methods in DOA estimation is compared
according to the ability of resolving adjacent signals, and successful
resolution is defined when the two most significant spectrum peaks
locate near the true signal directions, with biases no larger than 2◦.
Actually, this criterion compares the methods’ performance in both
model reconstruction and DOA estimation precision synthetically.

4.1. Solving Signals with Different Correlation Coefficients

Fix the signal-to-noise ratio (SNR) of both signals at −5 dB, their
directions at 10◦ and 17◦, the snapshot number at 100, and vary the
correlation coefficient of the two signals from 0 to 1.

For each correlation coefficient, 1000 trials are carried out, and
the probabilities of successful resolution of MUSIC, L1-SVD, L1-EVD
and L1-TEVD are given in Fig. 1.
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Figure 1. Resolution probabilities of MUSIC, L1-SVD, L1-EVD and
L1-TEVD when correlation coefficient increases.

Figure 1 shows that MUSIC fails to efficiently separate the two
signals and that its resolution probability decreases from 10% to 0
when the correlation coefficient increases. Among the three sparsity-
inducing methods, L1-SVD obtains the highest resolution probability
when the correlation coefficient is lower than 0.4, while L1-EVD is
slightly worse, and L1-TEVD performs worst. That is because when
the two signals are weakly correlated, the second signal-subspace
eigenvector still contains much signal energy, thus simply abnegating
it induces significant SNR loss. As the correlation between the
two signals strengthens, the signal energy contained in the second
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eigenvector attenuates gradually. When the correlation coefficient
is larger than 0.4, both L1-EVD and L1-TEVD surpass L1-SVD in
resolution probability, and L1-TEVD performs the best. The above
phenomenon indicates that the newly proposed methods are more
adaptable to correlated signals than existing methods. Moreover,
the average CPU time of the three sparstiy-inducing methods in
completing a single trial is listed in Table 1, which indicates that L1-
EVD and L1-TEVD are computationally more efficient than L1-SVD.

Table 1. Average CPU time of the sparsity-inducing methods.

Method L1-SVD L1-EVD L1-TEVD
CPU time (sec) 0.284 0.231 0.169

The performance and computation analysis in Fig. 1 and Table 1
demonstrates that L1-EVD and L1-TEVD are well designed for
DOA estimation of highly correlated and coherent signals, and L1-
TEVD shows more significant superiority over its counterparts in both
resolution ability and computational efficiency.

4.2. Solving Signals with Different Angular Distances

Fix the SNR of both signals at −5 dB, the snapshot number at 100,
the correlation coefficient of the two signals at 0.7, the direction of the
first signal at 10◦, and vary the direction of the second signal from 14◦
to 22◦ (i.e., the angular distance increases from 4◦ to 12◦). At each
angular distance, 1000 trials are carried out, and the probabilities of
successful resolution of MUSIC, L1-SVD, L1-EVD and L1-TEVD are
given in Fig. 2.

As the two signals are highly correlated, MUSIC performs much
worse than those sparsity-inducing methods, among which L1-TEVD
gains the highest resolution probability, and L1-EVD also outperforms
L1-SVD by some degree. This result is identical to that given in Fig. 1
at the correlation coefficient value of 0.7.

4.3. Solving Signals with Different SNR

Fix the directions of the two incident signals at 10◦ and 17◦,
respectively, the correlation coefficient at 0.7, the snapshot number
at 100, and vary the SNR of each signal form −15 dB to 5 dB. At
each SNR value, 1000 trials are carried out, and the probabilities of
successful resolution of MUSIC, L1-SVD, L1-EVD and L1-TEVD are
given in Fig. 3.
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Figure 2. Resolution probabili-
ties of MUSIC, L1-SVD, L1-EVD
and L1-TEVD when angular dis-
tance increases.
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Figure 3. Resolution proba-
bilities of MUSIC, L1-SVD, L1-
EVD and L1-TEVD when SNR
increases.

Figure 3 shows that MUSIC fails completely when the signal SNR
is lower than −5 dB, and L1-EVD and L1-TEVD outperform L1-SVD
for all the SNR values, with L1-TEVD achieving the highest resolution
probability among them in most cases.

4.4. Solving Signals with Different Snapshots

Fix the directions of the two incident signals at 10◦ and 17◦,
respectively, their SNR at −5 dB, the correlation coefficient at 0.7,
and increase the snapshot number from 20 to 200. At each snapshot
number, 1000 trials are carried out, and the probabilities of successful
resolution of MUSIC, L1-SVD, L1-EVD and L1-TEVD are given in
Fig. 4.
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Figure 4. Resolution probabilities of MUSIC, L1-SVD, L1-EVD and
L1-TEVD when snapshot number increases.
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It is shown in Fig. 4 that the increase of the snapshots gains little
improvement in the resolution ability of MUSIC, L1-TEVD performs
the best, and L1-EVD also outperforms L1-SVD significantly. The
result is identical to those shown in Figs. 1–3.

5. CONCLUSIONS

The problem of DOA estimation for highly correlated and coherent
signals is addressed in this paper, and two methods, named L1-
EVD and L1-TEVD, are proposed. Simulation results show that for
highly correlated signals, L1-TEVD performs the best in both DOA
estimation performance and computational efficiency among all the
methods considered; when the signals are weakly correlated, L1-EVD
performs better than L1-TEVD, and is just slightly worse than L1-SVD
while saving about 20% computation time. If the additive noise is not
Gaussian, i.e., impulsive [27] or Laplacian [28] the proposed method
needs some modifications which will be researched in the future work.

APPENDIX A. PROOF OF LEMMA 1

The zero-mean and Gaussian properties of the incident signals and
additive noise indicate that x(n) is also zero-mean and Gaussian, and
E(x(n)xT (n)) = 0, E(x(n)xH(n)) = R, thus
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