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Abstract—A robust direct data domain least squares (D3LS)
beamforming algorithm that is capable of reducing the sidelobe level of
the beam pattern is presented. By exploiting the sparsity of the desired
beam pattern, the proposed method can enhance the performance
with its lower sidelobe level and deeper null for interference while the
robustness against steering vector mismatch is increased when a proper
regularization parameter is selected. Simulation results demonstrate
the effectiveness of the proposed method.

1. INTRODUCTION

Adaptive beamforming, a technique for extracting the desired
signal while suppressing interference at the output of a sensor
array, has been widely used in radar, communications, sonar and
many other areas [1]. In past literatures, two macro classes of
adaptive beamforming algorithms have been proposed: statistical and
deterministic algorithms [2–4].

Statistical algorithms such as Capon beamformer [5] generally
require several successive snapshots of data to form an estimate of
the covariance matrix of interference to recover the desired signal from
the noise contaminated measurements. However, conventionally, the
computation of the covariance matrix requires much storage room
and heavier calculation compared with deterministic methods. And
in some systems such as radar and sonar often work in a nonstationary
environment, the statistic property of interference may fluctuate
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rapidly over a short distance. Namely, the covariance matrix may be
difficult to calculate. Thus, a single snapshot interference cancellation
technique will be more suitable for the dynamic scenarios.

In contrast to the statistical methods, deterministic algorithms
that can be performed in real time have been proposed and developed
mainly for dynamic scenarios where the direction of signal of interest
(SOI) is known as a priori information [2–4]. The approach adaptively
analyzes the data from a particular snapshot and then solves the
weights which are used for the cancellation of the interference without
having to estimate its covariance matrix. Consequently, deterministic
algorithms are ideally suited to suppress the blinking jammers and
rapidly changing clutter in a highly transient environment.

In the past two decades, ever since the Direct Data Domain
(D3) algorithm was first proposed to overcome the drawbacks of
statistical techniques by Sarkar and coauthors [6, 7], many literatures
have made further research on D3 algorithm. In these papers, some
refined algorithms are proposed to make the original D3 algorithm
more suitable for different scenarios. Mutual coupling between the
elements of an array severely undermines the interference suppression
capabilities of D3 algorithms. To eliminate the effects of mutual
coupling, the method of moments (MoM) with multiple basis functions
per element is exploited in [8]. A direct data domain least squares
(D3LS) space-time adaptive processing (STAP) approach is present
in [9] for adaptively enhancing signals. And its performance is
compared with statistical-based STAP in [2]. For the purpose of
enhancing the use of D3 approaches, [10] introduces the Pre-Doppler
concept. Moreover, in this study, a vector space-based theory which
enabled us to form rules for constructing a set of linear independent
data vectors has been established. Normally, D3LS algorithm is
performed by changing the complex weights, i.e., magnitudes and
phases. However, for large array systems, the computation complexity
becomes quite large. To solve this problem, Tapan K. Sarkar and his
coauthors have proposed phase-only weight control [11] and amplitude-
only weights adaptive algorithms [12]. To efficiently calculate the
real weight coefficients in [12], a new two-step convex optimization
framework derived by using Centro-Hermitian matrix manipulations
has been presented in [13]. When a priori direction of arrival (DOA)
of SOI is not known exactly, the performance of D3LS approach
may deteriorate seriously. Their work [14] presents a minimum norm
property for the sum of the adaptive weights that can be used to
refine the estimate of DOA of SOI in the D3LS algorithm. Besides,
D. Cristallini and W. Burger [15] propose a robust approach to take
into account the mismatch between the nominal and the actual target
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parameters to overcome the main drawback of deterministic STAP,
which is the need of exact knowledge of target parameters.

Although the entire D3LS algorithms mentioned above can
suppress interferences and noise effectively, it suffers from several
drawbacks such as reduced degrees of freedom (DOF), and relatively
high sidelobe level [2, 8]. Some improved algorithms that are capable of
dealing with these defects have been put forward. For the disadvantage
of the reduced DOF, Madurasinghe [16] presents a new flexible direct
data domain (FD3) approach to increase the DOF by inverting a
smaller data matrix. Another flexible algorithm that allows us to
control the DOF is a multiple snapshots based approach [17] which
mitigates the degradation of performance caused by the reduced
DOF. A modified D3LS approach making use of the contribution
of each element to increase the DOF is presented in [18]. For D3

STAP approaches, [19] proposes a new D3 approach using sparse
representation of clutter spectrum to maintain the full system DOF
and achieve better performance. To mitigate the disadvantage of the
high sidelobe level, Xing and Cai [20] set a sidelobe constraint to
restrain the sidelobe level within a preset threshold, and the resulting
problem is a convex optimization problem, which can be solved by
CVX [21]. Recently, sparse constraint on beam pattern has been used
in beamforming algorithms [22–24] to gain performance improvement.
Some modified sparse constraints are used in [25, 26] to enhance the
performance of sidelobe suppression. In this paper, the sparsity of
the beam pattern is used in the D3LS algorithm to reduce the high
sidelobe level while sustain its capability to suppress interference and
noise within a snapshot. By adding this sparse constraint, we can not
only get a lower sidelobe level, but also increase robustness against
the mismatch problem caused by imprecise knowledge of the desired
signal.

The rest of this paper is organized as follows. In the next section,
we describe the original D3LS algorithm. In Section 3, we present our
modified D3LS with sparse constraint (SC-D3LS). Some simulation
experiments are showed in Section 4. Finally, the conclusions are drawn
in Section 5.

2. PROBLEM FORMULATION

Consider a uniform linear array (ULA) with N omnidirectional sensors
and inter-sensor space d. Suppose there are L (L ≤ N) narrowband
signals with wavelength λc impinging on the array from the far field.
We assume that the desired signal comes from θs and our objective is
to estimate its complex amplitude. The output signal of the nth sensor
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at time t can be expressed as [12]

Xn(t) = αej2π(nd
λc

) sin θs +
P∑

p=1

mpe
j2π(nd

λc
) sin θp + r(t) (1)

where α is the complex amplitude of the SOI, and mp and θp are
the amplitude and direction of arrival of the pth interference signal.
P is the number of interference, and r(t) denotes the contribution of
thermal noise at antenna elements.

Then the received data for a given snapshot can be arranged as a
M ×M (M = N+1

2 ) dimensional matrix

[X] =




X1 X2 . . . XM

X2 X3 . . . XM+1
...

...
. . .

...
XM XM+1 . . . XN




M×M

(2)

For a particular row of (2), the row-to-row phase difference is

Z = exp
[
j2π

d

λc
sin θs

]
(3)

Then it can be inferred that the item Xn−1 − XnZ−1 contains the
contribution due to signal multipath, clutters and jammers except
the desired source signal. Thus, we can construct a (M − 1)×M
dimensional whole noise and interference matrix

T=




X1 −X2Z
−1 X2 −X3Z

−1 . . . XM−XM+1Z
−1

X2 −X3Z
−1 X3 −X4Z

−1 . . . XM+1−XM+2Z
−1

...
...

. . .
...

XM−1−XMZ−1 XM−XM+1Z
−1 . . . XN−1−XNZ−1


 (4)

Then the DOF descends to N+1
2 . According to the principle of adaptive

beamforming techniques, one can minimize the contribution due to the
noise and interference by choosing an appropriate weighting vector w.
In order to restore the signal component from the array output, we
fix the gain on the expected signal direction as a constant C, which
provides an additional equation that can be used to construct the
following matrix equation,



1 Z . . . ZM−1

X1 −X2Z
−1 X2 −X3Z

−1 . . . XM −XM+1Z
−1

...
...

. . .
...

XM−1 −XMZ−1 XM −XM+1Z
−1 . . . XN−1 −XNZ−1
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·




w1

w2
...

wM


 =




C
0
...
0


 (5)

A clear way to represent the above equation is to rewrite (5) in a vector
form [11],

Fw = y (6)

Therefore, the problem of eliminating interference and noise boils down
to solving the above equation with respect to w. Once the weights are
solved, α may be estimated from (7) [6]

α̂ =
1
C

M∑

i=1

wixi (7)

All above mentioned is the forward method of D3LS. The
extensions of forward method to backward procedure and forward-
backward method are straightforward, and the difference among them
is only the coefficient matrix. Coefficient matrix of backward procedure
is

B =




1 Z . . . ZM−1

X∗
N −X∗

N−1Z
−1 X∗

N−1 −X∗
N−2Z

−1 . . . X∗
M−X∗

M−1Z
−1

...
...

. . .
...

X∗
M+1 −X∗

MZ−1 X∗
M−X∗

M−1Z
−1 . . . X∗

2−X∗
1Z−1




(8)
where ∗ denotes complex conjugate, M = (N + 1)/2. In the forward-
backward model, the forward and the backward method are combined
to double the given data and thereby increase the degrees of freedom.
Its coefficient matrix is represented by

FB =




1 Z . . . ZM−1

X1 −X2Z
−1 X2 −X3Z

−1 . . . XM −XM+1Z
−1

...
...

...
...

XM−1 −XMZ−1 XM−XM+1Z
−1 . . . XN−1−XNZ−1

X∗
N −X∗

N−1Z
−1 X∗

N−1−X∗
N−2Z

−1 . . . X∗
M−X∗

M−1Z
−1

...
...

...
...

X∗
M+1−X∗

MZ−1 X∗
M−X∗

M−1Z
−1 . . . X∗

2−X∗
1Z−1




(9)
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3. THE PROPOSED D3LS WITH SPARSE CONSTRAINT
(SC-D3LS)

D3LS adaptive algorithms are able to estimate signal in the highly
nonstationary environment by processing the data snapshot by
snapshot [7]. However, the sidelobe level of the original D3LS
beamforming is high and is comparable to that of the mainlobe in
the experiments of [2, 8]. Thus, the output signal-to-noise ratio (SNR)
is reduced by the energy of interferences and noise which enter from
the high level sidelobe.

Based on the above considerations, in order to suppress the high
sidelobe level, a regularization item, which exploits the sparsity of
the whole beam pattern, is added to the D3LS cost function. By
adding the sparse constraint, (6) may not hold true. In fact, only
in the ideal environment in which the noise and clutter are absent, the
equality (6) is absolutely valid. In this paper, without loss of generality,
we assume that the noise r is an additive complex Gaussian random
vector. Therefore we can minimize the L2 norm of the noise energy
instead.

Accordingly, the proposed method can be formulated in the
following constrained form

minJ(w) = ‖Fw − y‖2
2 + λ

∥∥ĀHw
∥∥p

p
(10)

where λ is a non-negative regularization parameter and (·)H denotes
conjugate transpose. Ā consists of the steering matrix in the DOA
range with a uniform sample, namely,

Ā = [a(−90◦), a(−89◦), . . . , a(90◦)]N×181 (11)

where a(θ) = [1, ej2π( d
λc

) sin θ, . . . , ej2π(M−1)( d
λc

) sin θ]T is the steering
vector for a signal from angle θ broadside, wherein (·)T denotes
transpose. ‖ x ‖p

p =
∑

i |xi|p is the Lp-norm of x. When p ≤ 1, the
Lp-norm can be regarded as the diversity measure and lead to a sparse
solution [22]. The smaller the ‖ x ‖p

p, the sparser the x, which means
that the number of trivial entries in x is larger. This is always true in
the whole beam pattern whose main lobe is only a small part compared
with sidelobe pattern. Consequently, the beam pattern ĀHw has the
sparsity property. λ is an important parameter balancing the equation
allowable error and sparsity on the beam pattern that needs to be
chosen properly. If λ is set to zero, the modified method degrades
to the original D3LS. A large λ means that more DOF are used to
suppress the sidelobe, which will lead to performance degeneration
dramatically for lack of DOF to suppress the interferences.
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To get the solution of Equation (10), we take the partial derivative
of J with respect to w∗, where (·)∗ denotes conjugate, and using the
factored gradient approach [27], we get

∇w∗J = FHFw − FHy − λĀΠĀHw (12)

where
Π = diag

[∣∣(ĀHw
)
1

∣∣p−2
, . . . ,

∣∣(ĀHw
)
181

∣∣p−2
]

(13)

wherein (ĀHw)i is the ith element of ĀHw. Setting (12) to zero, we
get

w(n + 1) = inv
(
FHF + λĀΠĀH

)
FHy (14)

where inv(·) denotes the inverse operation.
For p ≤ 1, the proposed algorithm can be achieved by iterative

steps based on the focal underdetermined system solver (FOCUSS)
algorithm [28], the iterative procedure can be summarized as follows

1) Set a proper p and λ , and initialize w(0).
2) Construct the weighting matrix Π(n). The weighting matrix is

a diagonal matrix which is constructed by taking the previous
estimation as its diagonal elements

Π(n) = diag
[∣∣(ĀHw(n)

)
1

∣∣p−2
, . . . ,

∣∣(ĀHw(n)
)
181

∣∣p−2
]

(15)

3) Update changes to w(n + 1). The basic FOCUSS algorithm uses
the affine scaling transformation (AST), which scales the entries of
the current solution by those of the solutions of previous iterations
to construct the weighted minimum norm constraint. Then the
updated w(n + 1) is presented as

w(n + 1) = inv
(
FHF + λĀΠ(n)ĀH

)
FHy (16)

4) Set n = n + 1, and repeat the steps starting from (2) until the
solution w(n + 1) approximately no longer changes, i.e.,

|w(n + 1)−w(n)|≤δ (17)

where δ is a predefined small positive number. Finally, the solution
w is obtained. Note that, when p = 1, since the objective function
of (10) is convex, the optimal w can also be solved out by CVX [21]
and SeDuMi [29].

In this section, we only present the forward D3LS method with
sparse constraint and the other methods (such as backward method
and forward-backward method) can be constructed straightly.
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4. SIMULATIONS

In this section, three examples are presented to demonstrate the
effectiveness of the above modified procedure which is capable to
adaptively extract SOI from a known direction in the presence of
interferences and thermal noise and can keep a lower sidelobe level
than the conventional method. Without loss of generality, we consider
the situation of p = 1, p = 0.8 with δ = 0.0001 in the three examples
and the parameter λ is chosen experimentally to specify a well output
signal-to-interference-plus-noise ratio (SINR), which is defined as

SINR =
σ2

x

∣∣wHa(θ0)
∣∣2

wH
(∑q−1

i=1 σ2
i a(θi)aH(θi) + σ2

nI
)
w

(18)

where σ2
x and σ2

i are the variance of the SOI from θ0 and the
interference from θi, respectively. σ2

nI is the noise covariance matrix.
Note that we take the forward-backward method of FD3 (FD3-FB) [16]
as a baseline in the first two examples as it has a lower sidelobe level
than that of other original D3LS [7] algorithms. For the third example,
the baselines become D3LS and sample matrix inversion (SMI) method
which serves as an example of statistical algorithms.

4.1. Example 1: Beam Patterns in No Mismatch Case

In the first example, consider a signal of unit amplitude arriving from
θs = 0◦. We consider a 25-element uniform linear array (ULA) with
an element spacing of λc/2. Spatially white Gaussian noise is assumed
with unity variance. We assume that SNR is 10 dB, and all interference
signals have the same power with Interference to Noise Ratio (INR) of
80 dB. The parameter λ is set to 0.02 for p = 1 and p = 0.8. All the
signal intensities and directions of arrival are summarized in Table 1.

Table 1. Parameters of the incident signals.

Magnitude Phase DOA
Signal 1 V/m 0 0◦

Interference #1 10000 V/m 0 −65◦

Interference #2 10000 V/m 0 −40◦

Interference #3 10000 V/m 0 −20◦

Interference #4 10000 V/m 0 35◦

Interference #5 10000 V/m 0 70◦
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In this simulation, we first compare the beam pattern of the
proposed method, i.e., the forward-backward method of FD3 with
sparse constraint (SC-FD3-FB), with that of FD3-FB and original
forward-backward method of D3LS (D3LS-FB) algorithm without
mismatch in the DOA of SOI. As for the FD3 method, we choose
M = 21 in (9). The derived beam patterns are shown in Fig. 1. It is
observed that the interference nulls of the SC-FD3-FB beam pattern
are much deeper than that of both FD3-FB and D3LS-FB and occur
along the correct directions.

4.2. Example 2: Beam Patterns in the Presence of DOA
Mismatch

In the second example, we assume that there is a 3◦ mismatch in the
DOA of SOI, i.e., the true incident angle is 0◦, and the assumed known
DOA of SOI is 3◦. λ for p = 1 and p = 0.8 are set to be 0.5. The other
experimental parameters are set the same as that of the first example.
It is observed from Fig. 2 that the proposed method with p = 0.8 and
p = 1 has a better performance than the others. The new method is
not sensitive to the mismatch and can provide a high array response
in the direction of SOI. In contrast, the FD3 method has a null in 0◦.
It implies that ignoring the property of beam pattern, i.e., sparsity,
may cause potential performance loss when there exists steering vector
mismatch. This is because in the proposed method, some of the DOF
are spared to suppress the high sidelobe level, which helps to lower the
algorithm’s sensitivity to the steering vector mismatch.
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case.
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4.3. Example 3: Comparison of Reconstructed Signals

In this example, we will compare the modified algorithm’s and
the conventional algorithm’s output waveforms instead of the beam
pattern [16]. The illustration of Fig. 3 is based on a 21-channel ULA
with half wavelength spacing where the three interference signals’
DOA are 25◦, −10◦, 45◦ and 10◦ corresponds to the DOA of SOI.
The SNR and INR are set to 10 dB, 30 dB respectively and all 300
samples are used to compute weights for the sample matrix inversion
(SMI-300) solution while the D3LS algorithm including the forward
method of D3LS with sparse constraint (SC-D3LS-F) and original
forward method of D3LS (D3LS-F) only require one snapshot. We
set λ = 0.02 in the SC-D3LS-F algorithm. The amplitude of SOI
is s1(t) =

√
2 sin(16π ∗ k

320) ∗ √ps (k = 1, . . . , 300), ps is the power of
SOI. Fig. 3 shows that the performance of SC-D3LS-F is superior to
that of D3LS-F and the SMI-300. Thus, it can be inferred that the SC-
D3LS-F algorithm can maintain a high performance when the situation
comes to limited snapshots available and interference existing.

0 5 10 15 20 25 30 35 40
 -5

 -4

 -3

 -2

 -1

0

1

2

3

4

5

snapshot number (21 sensors)

s
(t

)/
v

desired signal

D
3
LS-F

SC-D
3

LS-F(p=1)

SC-D
3

LS-F(p=0.8)

SMI-300

Figure 3. First 40 snaps of estimated signal.

It should be mentioned that the selection of the regularization
parameter λ for the performance of the proposed method is important,
because λ represents a tradeoff between the equation allowable error
and sparsity on the beam pattern. From the three examples above,
we can see that when the steering vector mismatch problem exists, a
larger λ should be chosen to alleviate the algorithm’s sensitivity to the
mismatch. Instead, in the presence of a large number of interference
signals, a small λ should be selected to restrain the interference signals.
When an appropriate λ is selected, we can not only get a better array
output performance (such as output SINR), but also can get a lower
sidelobe level compared with conventional D3LS beamformer.
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5. CONCLUSION

In this paper, a robust direct data domain least squares adaptive
processing approach exploiting the sparsity of the desired beam pattern
is presented. The sparse constraint can be viewed as a priori
information of the desired beam pattern, which can be utilized for
D3LS beamforming to reduce the high sidelobe level and increase the
robustness against mismatch problem with a proper regularization
parameter. The experiment results show that the high sidelobe for
conventional D3LS methods is much alleviated and the robustness
against steering mismatch is improved simultaneously.
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