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Prediction of Slot-Shape, Slot-Size and Inserted Air-Gap
of a Microstrip Antenna Using Knowledge-Based Neural Network

Taimoor Khan1, * and Asok De2

Abstract—In this paper, the slot-shape and slot-size introduced on the radiating surface of a microstrip
antenna as well as the inserted air-gap between the substrate sheet and ground plane are predicted,
simultaneously. This synthesizing-prediction is carried out using knowledge based neural network
(KBNN) model as this approach requires very less amount of training patterns. The suggested approach
is validated by fabricating and characterizing three prototypes. A very good agreement is attained in
measured, simulated and predicted results.

1. INTRODUCTION

The synthesis of a microstrip antenna (MSA) deals with deriving an antenna structure, i.e., physical
dimension(s) of the MSA, substrate thickness and relative permittivity [1]. Antenna synthesis is usually
possible if the problem is limited to a specific type of antenna or a narrow range of specifications, and
it is adequate for many applications. The synthesizing methods are valuable in guiding the antenna
designers in pursuit of near optimal solutions to the problem class. The synthesis becomes more difficult
for complex antenna requirements. Pattern synthesis problem, in general, is to specify pattern variables
and then to determine the required antenna variable values for a given antenna geometry type [1]. To
make the synthesis process easier, several simulation code packages, such as IE3D [2], HFSS [3], CST [4],
and ADS [5], are developed. However, these simulators, by themselves, do not synthesize an antenna.
These simulators only analyze a synthesized structure and provide calculated performance parameters.
The antenna synthesis basically originates from human experience, knowledge and innovation, even
though an optimum and accurate synthesis often cannot be achieved without an analysis tool. Thus,
these obligations in conventional synthesis methods lead to complexities and processing cost. For
fulfilling such obligations, neural networks modeling could be a better alternative [6–12]. In the last
decade, artificial neural networks (ANN) modeling has acquired enormous importance in the microwave
community, especially in modeling of MSAs due to their ability and adaptability features. The neural
models [7–12] may not be very reliable if they are trained with small number of patterns. Also, even
with sufficient training patterns, the reliability of these models is not guaranteed in extrapolation region,
and in most cases, it fails. Further, the training patterns are generally created using simulation and/or
measurement approach. For a complex geometry, generating large number of patterns becomes time
consuming and sometimes very expensive. It is so because the simulation/measurement approach is to
be performed for several combinations of input parameters.

The concept of knowledge-based neural networks (KBNN) has recently been introduced to reduce
the required training patterns for a neural network in several cases [13–23]. These cases are mentioned
as: designing of microwave problems [13], modeling of microwave components [14], identifying the
performance of electromagnetic devices [15], modeling of stripline discontinuities [16], designing of
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microwave phase shifters [17], modeling of microstrip T-junction [18], automatic model generating
technique for microwave modeling [19], advanced electromagnetic data sampling algorithms for several
microwave structures [20], reverse-modeling approach to analyze electromagnetic compatibility (EMC)
of printed circuit boards (PCBs) and shielding enclosures [21], modeling for determining the data
distribution, model structure adaptation, and model training in a systematic framework [22]. Hence,
in [13–22], several diverse and complicated cases have been resolved using KBNN techniques, but
unfortunately, the literature of KBNN techniques for modeling of microstrip antennas is very limited [23].
Watson et al. [23] have only used it for computing single performance parameter of a patch/slot antenna
with co-planar waveguide (CPW) feeding. In this paper, the concept of KBNN modeling has been used
for predicting slot-shape, slot-size and inserted air-gap, simultaneously. To the best of the authors’
knowledge, there is no published work for modeling such a complicated problem in the referenced
literature [7–12] and [13–23]. Handling such a complicated problem using analytical/numerical
techniques is still a challenging task facing the electromagnetic community. Electromagnetic simulating
packages can do it roughly, but only at the cost of large computational time [3–6]. Further, the
simulation approach is not suitable in the situation where instant answer is required as in the case
of synthesizing microstrip antennas by antenna designers. In such adverse situations, ANN modeling
is used which produces an accurate response very fast, and the concept of KBNN is incorporated for
reducing required training patterns for the same required level of accuracy. The unique feature of
the proposed model is to predict slot-shape, slot-size and inserted air-gap of four slotted geometries,
simultaneously. These parameters are predicted for the given desired values of resonance frequencies,
gains, directivities, antenna efficiencies and radiation efficiencies for dual-frequency operation. This
paper is organized as follows. Section 2 describes KBNN synthesis modeling. Section 3 illustrates
results and validation. Conclusion followed by references is then discussed in Section 4.

2. KBNN MODELING FOR SYNTHESIS

Neural networks are massively distributed analogous processors and becoming powerful techniques for
resolving cross-disciplinary problems [6]. A neural network has usual tendency for storing empirical
knowledge during training and making it available for the use during testing. The purpose of training
a neural network model is to minimize the error between actual and calculated outputs. The trained
model, thus obtained, is tested on some arbitrary sets of pattern which are not included during training.
The algorithms for both training and testing of the neural model are implemented using the neural
network tool box in MATLAB software on a personal computing machine with system configuration;
Dell OptiPlex 780 Core 2 Duo CPU E8400, 3.0 GHz with 4.0 GB RAM.

A generalized multilayered perceptron (MLP) neural model is shown in Figure 1(a), which has a
structural configuration of m ∗ n ∗ k. It means that the model has m-number of neurons in the input
layer, n-number of neurons in the hidden layer and k-number of neurons in the output layer. The input-
to-hidden layer weights are denoted as: Wji for 1 ≤ i ≤ m and 1 ≤ j ≤ n and the hidden-to-output
layer weights as: Wqj for 1 ≤ q ≤ k and 1 ≤ j ≤ n. The excitation and response of the model are
represented as: ei for 1 ≤ i ≤ m and rq for 1 ≤ q ≤ k. The model within a box of dotted line is basically
known as a MLP neural model which has extensively used in the literature [7–12]. The accuracy of
this type of model depends on the number of training patterns generated by simulation/measurement,
and it increases by increasing the number of training patterns. Generating a large number of training
patterns is actually a time consuming process, and sometimes it becomes very expensive because the
simulation/measurement approach is to be performed for several combinations of input parameters. To
overcome this problem, the prior knowledge is incorporated in the existing MLP model. This prior
knowledge can be attained using an analytical model, empirical model and/or an already trained neural
model [23]. The attained prior knowledge is incorporated through a prior knowledge input point in the
neural model shown in Figure 1(a), which is termed as a fine model for convenience. For the proposed
problem, the structural configuration of this fine model is optimized as: m = 10, n = 11 and k = 6.

The prior knowledge incorporated in Figure 1(a) is attained using coarse model in two different
ways illustrated in Figure 1(b) and Figure 1(c), respectively. The coarse model mentioned here is
simply an MLP model shown in Figure 1(a) but with a different structural configuration (m = 10,
n = 10 and k = 6). These two models (fine model and coarse model) are inherently less accurate, but if
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Figure 1. KBNN neural approach. (a) Fine model. (b) Method-1 (attained prior knowledge). (c)
Method-2 (attained prior knowledge).

they are connected simultaneously, then the accuracy of the whole network is improved drastically. In
Figure 1(c), the computed neural matrix [r1] is compared to its simulated counterpart matrix [r2] for
creating an error matrix [s1]. Now the matrix [r1] in Figure 1(b) and matrix [s1] in Figure 1(c) have
some prior knowledge in two different ways; one is in direct form (prior knowledge-1) whereas the other
in term of error (prior knowledge-2), and thus the attained prior knowledges (prior knowledge-1 and
prior knowledge-2) are applied on the Fine Model depicted in Figure 1(a), respectively. For avoiding
any ambiguity, these models are denoted as KBNN model-1 which consists of Figure 1(a) + Figure 1(b)
and KBNN model-2 which consists of Figure 1(a) + Figure 1(c), respectively. The training strategy of
thus formed KBNN models is illustrated as follows.

Let the excitation and response matrices are as follows:
[ei] where i = 1, 2, . . . ,m
[rq] where q = 1, 2, . . . , k

(1)

The weight matrices are represented as:
[wji] where j = 1, 2, . . . , n and i = 1, 2, . . . ,m
[wqj] where q = 1, 2, . . . , k and j = 1, 2, . . . , n

(2)

The outputs of the jth and qth neurons are:
jout = Φ (iout × wji) = Φ (ei × wji)
qout = rq = Φ (jout × wqj)

(3)

The objective of the training is to reduce the global error E defined as:

E =
1
N

N∑

n=1

En (4)

where N is the total number of training patterns and En the error corresponding to nth training pattern
which is computed as follow:

En =
1
2

6∑

q=1

(tq − rq)
2 (5)

where tq is the target output of qth output neuron and rq the computed output of neural model.
The task of a training algorithm is to reduce this global error by adjusting the weights and biases.

This is done using LM (Levenberg Marquardt) algorithm [25]. The modified weights without and with
prior knowledge are mentioned in Eq. (6) and Eq. (7), respectively.

[
wnew(without knowledge)

]
= [wold] − [

J T J + μI
]−1

J T E (6)
[
wnew(with knowledge)

]
= [wold] + [wknowledge] −

[
J T J + μI

]−1
J T E (7)
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where J is the Jacobian matrix, and it contains basically the first derivatives of error with respect to
weights and biases. The Jacobian matrix can be easily computed through a standard backpropagation
algorithm [26]. In Eq. (6), I is the identity matrix whereas the combination coefficient (μ) can be
predicted as reciprocal to the learning rate (η).

The training and testing patterns for the above mentioned neural approach are generated via the
geometries depicted in Figure 2. The side view is shown in Figure 2(a) in which a rectangular patch of
dimensions 61 × 56 mm2 is designed using RT-Duroid substrate RO3003 (εr = 3 and h = 0.762 mm).
For getting dual-resonance, two resonating modes (TM10 and TM01) are simultaneously excited by a
single probe. An air-gap (Ag) between the substrate sheet and ground plane is then inserted [24]. The
geometry after inserting an air-gap is then analyzed by inserting four different slots (viz. longitudinal-slot
(LS), transverse-slot (TS), asymmetrical-cross-slot (CS) and square-slot (SS), respectively. These four
slotted antennas are termed as LS-Antenna, TS-Antenna, CS-Antenna and SS-Antenna, respectively,
and their top views are shown in Figure 2(b)–Figure 2(e), respectively. These geometries are analyzed
using method of moments (MoM) based IE3D software [3] for creating training and testing patterns
required for KBNN modeling. Different patterns for dual-resonance (f1 and f2), dual-frequency gains
(G1 and G2), dual-frequency directivities (D1 and D2), dual-frequency antenna efficiencies (A1 and A2)
and dual-frequency radiation efficiencies (R1 and R2) are generated by varying slot-dimensions (x1, y1,
x2 and y2) and thickness of air-gap (Ag), simultaneously. Thus, ten different electrical parameters (f1,
f2, G1, G2, D1, D2, A1, A2, R1 and R2) are obtained for each set of five geometrical parameters
(x1, y1, x2, y2 and Ag). These patterns are generated by varying both slot-dimensions (between
1mm ≤ slot-dimensions ≤ 50 mm) and air-gap (between 1mm ≤ air-gap ≤ 10 mm). After generating
the patterns, these are converted into training and testing patterns according to a statistical design
of experiments (DOE) to capture the underlying input-output relationship [6]. The sampling strategy
used for generating patterns is mentioned in Table 1.

After generating patterns using IE3D software, the KBNN modeling is created for predicting slot-
shape (S), slot-size (x1, y1, x2 and y2) and the thickness of the inserted air-gap (Ag), simultaneously.
This prediction is carried out for achieving desired values of dual-resonance (f1 & f2), dual-frequency
gains (G1 & G2), dual-frequency directivities (D1 & D2), dual-frequency antenna efficiencies (A1 &
A2) and dual-frequency radiation efficiencies (R1 & R2). The predicted slot-shape is represented by a
dummy variable, ‘S’, where S = 1, 2, 3 and 4 corresponds to LS-Antenna, TS-Antenna, CS-Antenna
and SS-Antenna, respectively.
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Figure 2. Proposed slotted antennas with air-gap.

Table 1. Sampling strategy.

Parameters Specified Range Step-Size
x1 1mm ≤ x1 ≤ 50 mm 0.1 mm
y1 1mm ≤ y1 ≤ 50 mm 0.1 mm
x2 1mm ≤ x2 ≤ 50 mm 0.1 mm
y2 1mm ≤ y2 ≤ 50 mm 0.1 mm
Ag 1mm ≤ Ag ≤ 10 mm 18 µm
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During the training of KBNN modeling, some initial parameters, such as mean-square-error (MSE)
E = 4.8 × 10−5 and learning rate (η) = 0.15, are selected. Before applying training, the patterns
are normalized between +0.1 to +0.9 to avoid the convergence problem of KBNN models. The initial
weights and bias values are also selected as random numbers between 0 and 1. Once the training
is over, the trained KBNN model then predicts the slot-shape (i.e., LS-Antenna, TS-Antenna, CS-
Antenna or SS-Antenna), slot-size (i.e., x1, y1, x2 and y2) and thickness of the inserted air-gap (i.e.,
Ag) within a fraction of a second for any arbitrary set of parameters: 1.5GHz ≤ (f1 and f2) ≤ 3.0 GHz,
6.2 dBi ≤ (G1 and G2) ≤ 9.6 dBi, 6.6 dBi ≤ (D1 and D2) ≤ 9.9 dBi, 83% ≤ (A1 and A2) ≤ 100% and
85% ≤ (R1 and R2) ≤ 100%. For better understanding of the KBNN modeling, a conventional MLP
model of structural configuration 10 ∗ 78 ∗ 76 ∗ 6 using the approach as described in the literature [7–12]
is also created. The prediction of Slot-Shape (S), Slot-Size (x1, y1, x2, y2) and inserted Air-Gap (Ag)
is summarized using block-diagram in Figure 3. The excitation for the block-diagram is mentioned
as: dual-resonance (f1 & f2), dual-frequency gains (G1 & G2), dual-frequency directivities (D1 & D2),
dual-frequency antenna efficiencies (A1 & A2) and dual-frequency radiation efficiencies (R1 & R2),
simultaneously.

3. RESULTS AND VALIDATION

3.1. Numerical Results

In this paper, a conventional MLP model along with two KBNN models (KBNN model-1 and
KBNN model-2) are proposed for predicting slot-shape, slot-size and inserted air-gap of four different
geometries, simultaneously. Table 2 illustrates a comparison of optimized values of weights and biases in
three neural models. These optimized values are calculated using Equation (8). It is clear from Table 2
that the optimized weights and biases in KBNN models are less than that of MLP model. Thus, in
KBNN models, the optimized weights and biases are reduced by 96.62% and 79.38%. It means that the
KBNN models require only 3.38% weights and 20.62% bias values of that of MLP model.

Total Optimized Weights = (10 × 76) + (76 × 78) + (78 × 6) = 7156
and Total Optimized Biases = (76 + 78 + 6) = 160

(8)

Table 3 shows an accuracy comparison in three neural models. In computing the accuracy, three
different cases, Case #1, Case #2 and Case #3 having 70%, 50% and 40% training patterns, are

Table 2. Comparison of weights and biases.

Neural Model Optimized Structure Optimized Weights Optimized Biases
MLP Model 10 ∗ 76 ∗ 78 ∗ 6 7156 160

KBNN Model-1 10 ∗ 10 ∗ 6 and
16 ∗ 11 ∗ 6

242 33
KBNN Model-2 242 33



28 Khan and De

considered. It is clear from Table 3 that the percentage error in MLP model is drastically increased
by reducing the training patterns from 70% to 40%. It means that the MLP model produces accurate
results only if it is trained with adequate number of training patterns. On the other hand, both the
KBNN models produce more accurate results even with lower number of training patterns. During
testing of KBNN model-1, the accuracy is changed from 1.19% to 2.31% by reducing the number of
training patterns from 70% to 40%, whereas in KBNN model-2, it is changed from 0.46% to 1.14% only
for the same level of reduction in training patterns. Thus, KBNN model-2 is observed more accurate
than KBNN model-1 for the proposed problem.

Table 3. Accuracy comparison in neural models.

Training Patterns Neural Model Error (Training) Error (Testing)

70% (Case #1)
MLP Model 2.74% 3.09%

KBNN Model-1 1.11% 1.19%
KBNN Model-2 0.44% 0.46%

50% (Case #2)
MLP Model 9.12% 14.86%

KBNN Model-1 1.41% 1.53%
KBNN Model-2 1.03% 1.09%

40% (Case #3)
MLP Model 12.93% 17.53%

KBNN Model-1 2.14% 2.31%
KBNN Model-2 1.03% 1.14%

For initialization purpose, the weight and bias values are randomly selected between 0 and 1. Thus,
to observe the overall behavior of computed errors, the stochastic behavior of the mean and standard
deviation of computed errors are analyzed. For this purpose, a relationship between mean and standard
deviation (SD) is developed by considering a term coefficient of variation (CoV) which is defined as
the ratio of standard deviation (SD) to the mean value. CoV closer to 0 represents greater uniformity
whereas CoV closer to 1 represents larger variability of the errors [27]. For KBNN model-2, the mean
and standard deviation of five-dimensional computed error are mentioned as follow:

[Mean] = [1.4412 1.4142 1.4366 1.4227 1.3952]
and
[SD] = [0.1505 0.1486 0.1483 0.1517 0.1539]

(9)

Hence, the coefficient of variation (CoV) is computed as:

[CoV] =
SD

Mean
= [0.1044 0.1051 0.1032 0.1066 0.1103] (10)

Thus, the overall error points are uniformly distributed over a full validation set of simulated patterns
as the computed CoV matrix is closer to 0 which further supports the effectiveness of KBNN model-2.
Same order of error distribution is achieved in KBNN model-1 too.

During simulating a structure in IE3D software, 1.5 GHz to 3.0 GHz frequency range with total
100-sampling points is used. The simulation time in IE3D software depends on the complexity inserted
in the geometry. For the proposed structures, it is roughly computed as ∼ 1 hr 53 min/structure. By
using neural modeling, the computational time is fairly reduced. Using LM algorithm, the MLP model
is trained in 1633 sec. (∼ 27 min) and requires 29651 iterations. The time elapsed during testing of the
neural models is computed using MATLAB syntax ‘cputime’ as mentioned below:

clc;

clear all;

time 1 = cputime;
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Start of Testing Algorithm

Program Statement-1

Program Statement-2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Testing Algorithm

Time Elapsed = cputime-time 1
=∼ 44 msec. for MLP model (or ∼ 31 msec. KBNN model-2)

This procedure is repeated for several independent runs, and finally it is concluded that the MLP
model and KBNN model require ∼ 44 msec and ∼ 31 msec, respectively in producing the results after
training [25]. Thus, these neural models after training are much faster than that of the simulation
method.

Also the training of the MLP model requires only ∼ 27 kB system RAM, and for testing the
performance, only ∼ 1.44 kB RAM is required. Hence, the required memory space in both training and
testing of MLP model is also less than 36 MB required for simulation. The structural configuration (i.e.,
number of hidden layers as well as neurons in each hidden layer) of two KBNN models is less than that
of MLP model. Hence, the KBNN models require less memory space than that of the MLP model. The
optimized values via IE3D software and predicted values via KBNN model-2 are also compared, and
this comparison is illustrated in Table 4 which shows a very good agreement between the two.

The three neural modeling schemes are also tested in the extrapolation region (i.e., outside the
region of training patterns) by expanding the original input space by 25%. By doing this, total 50
arbitrary sets of pattern are created for each slotted antenna geometry. The percentage errors in

Table 4. Comparison of simulated and predicted values.

Parameters LS-Antenna TS-Antenna CS-Antenna Time Elapsed

Optimized values

(via IE3D software)

x1 = 38.00 mm

y1 = 1.50 mm

x2 = 0

y2 = 0

Ag = 5.10 mm

x1 = 0mm

y1 = 0mm

x2 = 1.00 mm

y2 = 41.00 mm

Ag = 5.10 mm

x1 = 38.00 mm

y1 = 1.50 mm

x2 = 1.0 mm

y2 = 41.00 mm

Ag = 5.10 mm

∼ 1 hr 53 min

Predicted values

(via KBNN Model-2)

x1 = 38.0011 mm

y1 = 1.4973 mm

x2 = 0.0012 mm

y2 = 0.0009 mm

Ag = 5.1003 mm

x1 = 0.0002 mm

y1 = 0.0008 mm

x2 = 0.9561 mm

y2 = 41.0022 mm

Ag = 5.0897 mm

x1 = 37.5692 mm

y1 = 1.5002 mm

x2 = 1.0031 mm

y2 = 41.9856 mm

Ag = 5.0956 mm

∼ 31msec.

(during testing of

KBNN model-2)
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Figure 4. Performance neural models in extrapolation region.
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Table 5. Comparison of dual-resonances (f1 & f2) in GHz.

LS-Antenna TS-Antenna CS-Antenna

Measured

Values

Simulated

Values

Measured

Values

Simulated

Values

Measured

Values

Simulated

Values

1.6850 & 1.8750 1.7020 & 1.8430 1.7420 & 1.8940 1.7630 & 1.9140 1.7800 & 1.9250 1.7630 & 1.9140

computed parameters are then compared, and it is concluded that the accuracy of KBNN models is
slightly depreciated for all 50 generated patterns compared to that of MLP model. It may be due to
built-in prior knowledge in the KBNN models to give more information to the patterns not seen during
the training. Figure 4 summarizes the extrapolation capability of three neural models in predicting the
inserted air-gap (Ag) of Antenna-3. The same level of accuracy is observed in predicting the slot-size
too.

3.2. Experimental Results

For validating the proposed work, three prototypes, corresponding to LS-Antenna, TS-Antenna and CS-
Antenna, are also fabricated using RT-Duroid substrates, respectively. The slotted rectangular patch is
etched on upper side of the substrate, whereas an air-gap of 5.1 mm is inserted between substrate and
ground plane using Teflon rods as shown in Figure 5(a). The top views for these three prototypes are
shown in Figure 5(b), Figure 5(c) and Figure 5(d), respectively.

Figure 6 compares the measured and simulated values of S-parameters. A good convergence
between them confirms that the Teflon rods do not affect antenna performance. Further, during
measurement, the bandwidth of the CS-Antenna is measured as: 55.50 MHz, whereas during simulation
it has been observed as 250 MHz (1.99 GHz–1.74 GHz). It may be due to lack of caution in fabricating
and/or inserting the air-gap using Teflon rods. Furthermore, the size and losses of the solder joints are
not considered during the simulation which may also cause this difference. Further, Table 5 illustrates
a comparison of measured and simulated dual-resonances for three slotted antennas which also shows a
very good conformity.

(a) (b)

Teflon Rods

SMA Connector 5.1 mm Air-Gap
(ii) TS-Antenna(i) LS-Antenna (ii) CS-Antenna

Figure 5. Slotted antennas with inserted air-gap (screen-shots). (a) Side-view. (b) Top-view.
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Figure 7. Co- and cross-polarizations (measured values). (a) Patterns at 1.6850 GHz (LS-Antenna).
(b) Patterns at 1.7420 GHz (TS-Antenna). (c) Patterns at 1.7800 GHz (CS-Antenna).

The dual-resonance of the referenced patch antenna without any slot is obtained as: 2.0256 GHz
and 2.1970 GHz. The measured and simulated dual-resonances of slotted antennas are summarized in
Table 5. Hence, by inserting a slot, the excited surface current path lengthens, increasing the antenna
length and hence decreasing the dual-resonance. Thus, the dual-resonance is lowered in three slotted
prototypes showing their fair compactness.

The normalized radiation patterns for both E- and H-planes are also measured. For the first
resonance, these patterns are shown in Figure 7(a), Figure 7(b) and Figure 7(c), respectively. Figure 6
shows that the ratio of co-to-cross polarizations is higher than 30 dB in E-plane and higher than 20 dB
in H-plane. The same degree of co-to-cross polarization ratio is achieved for the second resonance too.

4. CONCLUSION

In this paper, an MLP neural model has been suggested for synthesizing four slotted microstrip antennas
with inserted air-gap, simultaneously. The MLP model has been used for instantly predicting slot-shape,
slot-size and thickness of inserted air-gap, simultaneously. The neural model for such a complicated
case has been rarely attempted earlier in the open literature. For MLP model, the level of convergence
is ≤ 3% as mentioned in Table 3. Two knowledge-based neural models have also been proposed for
reducing the required number of training patterns. These models have shown better accuracy even with
less number of training patterns, for both interpolation and extrapolation regions. Thus, the knowledge-
based neural approach can be helpful for the antenna designers in a situation where the generation of
patterns is expensive and time-consuming.

In general, a neural implementation of four different slotted microstrip antennas may require four
different neural modules, but in the proposed work, one module can fulfill the requirement of four
different neural modules. Thus, the present approach may be considered as a generalized approach
in this sense. Hence, the proposed approach can be helpful for the design engineers in prediction of
the slot-shape, slot-size and the amount of inserted air-gap, simultaneously for the desired level of
performance parameters.
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