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A Quantum MIMO Architecture for Antenna Wireless Digital
Communications

Said Mikki*

Abstract—A general theoretical framework for MIMO digital wireless communications is proposed for
sending classical M -ary information over quantum states instead of classical electromagnetic waves.
The basic theory of quantum MIMO architecture suitable for spatial diversity application is proposed
and analyzed. The fundamental design equations are derived and shown to be equivalent to a special
constrained nonlinear optimization problem. The main advantage of the MIMO architecture is that it
provides new resources for the system designer since using multiple Tx quantum antennas coupled with
judicious choice of optimum positions for the multiple Rx quantum measurement operators can enhance
the ability to realize quantum communication systems. Therefore, additional degrees of freedom are
expected to become available in the proposed quantum MIMO systems. The proposed system is expected
to be best physically realized using electromagnetic process in second-quantized (photon) states, ideally
coherent or squeezed radiation states.

1. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) systems refer to a class of wireless communication systems
designed to address the mounting difficulties arising from the negative impact of increasing complexity,
coupling, and interferences in modern-day propagation environments [1–4]. Since more devices and
systems are being used in the same unit area, and urban settings themselves are becoming denser
and more crowded, the impact of undesired objects like scatterers has made it extremely hard to
monotonically increase data rates using the traditional Single-Input-Single-Output (SISO) scheme of
wireless communications. Instead, there is a need to devise new architectures and topologies capable
of exploiting the rich spatial diversity and inherent complexity of typical propagation environments.
MIMO system is such technology, and together with its immediate predecessor, diversity system, has
proved to be one of the most promising candidates for bringing out significantly higher data rates for
5G and autonomous systems applications.

The main goal of the present paper is to build a basic general fundamental theory for MIMO
communications over quantum channels where classical information is transmitted through quantum
states instead of classical electromagnetic fields. In quantum optical wireless communication systems,
one requires the use of a suitable light source at the transmitter in order to generate carefully prepared
quantum states of light that encode classical information where an isomorphism exists between classical
bits or symbols and a quantum alphabet composed of a set of coherent quantum states. The special
radiating structure capable of preparing a specific coherent state based on a classical input source is
termed quantum antenna, which we refer to for brevity as ‘q-antenna,’ while classical antennas are
simply duped ‘c-antennas.’ Quantum MIMO differs from the previously proposed quantum single-
input-single-output (SISO) [5–10, 13–19, 26–29] in utilizing multiple quantum antennas at the Tx and
multiple receivers at the Rx terminal. Therefore, quantum MIMO (q-MIMO) is essentially motivated
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by applications in wireless communications, rather than the “wired” optical-fiber links that appear to
have dominated research in optical quantum communications so far. As such, this makes the study
and development of quantum MIMO systems considerably more difficult than fiber-optics quantum
communications since not much is known experimentally and theoretically about optical wireless
networks. Indeed, since scattering effects are very severe in the optical regime, while building quantum
wireless links at lower frequencies like RF, microwave, or mmWave is not feasible due to weakness
of quantum effects at such low frequency, much of the research on quantum telecommunications have
focused on using guided waves to encode classical information using quantum states, mostly coherent
laser modes. In our opinion, such overall situation in the nascent field of quantum communications
makes it even more urgent to consider alternative system design for wireless quantum communications
capable of addressing the multiplying difficulties arising from both using optical quantum wireless and
the presence of dense-and-complex propagation environments in present-day urban settings. Moreover,
it is expected that similar to classical MIMO, the use of multiple antennas and receivers can enhance
the spectral efficiency of quantum MIMO links over quantum SISO.

In what follows, we first review the classical SISO detection theory, which is based on the classical
work of Helstrom and Helovo [5–9]. Next, the essential ideas of a MIMO system are proposed and
evolved in terms of a set of commuting operators. The common projector systems of such operators
are then used to extend the classical theory to the multiple antenna case. New design equations are
derived and compared with the SISO Rx structure. The main objective of this paper is to introduce a
very general theoretical framework for quantum wireless MIMO suitable for future, more concrete and
application-oriented implementations. The presentation is kept intentionally broad and very minimal
physical assumptions are made in order to allow different physical realization to emerge in the future.
However, analysis, discussion, and proposals regarding the practical implications and future prospects
of our system are provided in Sec. 3.3.

2. THE BASIC SETTING OF QUANTUM COMMUNICATIONS

2.1. Introduction

The quantum SISO system possesses an overall similarity to its classical counterpart in still having the
same essential building blocks, namely information source, transmitter, channel, and receiver [9, 10].
However, certain fundamental differences also exist, and these pertain to the use of quantum physics
to transmit information rather than electromagnetic fields in classical states. The information source
remains the same, but in q-SISO systems, the transmitter will be composed of a quantum encoder
(q-encoder) and a quantum antenna (q-antenna), together producing radiation in a quantum state
|s〉. As the quantum state (q-state) travels through the quantum channel (q-channel), it will be either
transformed to another pure state |s′〉, or become a mixed state, in which it is best to represent the
latter by the density operator, say ρs. The received (pure or mixed) states will then be processed by
a receiver consisting of two fundamentally distinct systems. The first is the measurement device M ,
which will project the received state onto one of finite number of possible outcomes, the spectrum of
the measurement operator associated with the device M . The next system is the quantum decision
(q-decision) circuit, which is essentially classical in the sense that it will take the actually produced
measured outcome from M (now a classical number measurement) and makes a decision about which
of the finite classical information symbols at the transmitter was actually sent.

2.2. The Quantum SISO Transmitter

We work with an M -ary digital communication system in which the information source will generate
information sequence an

i , where n and i are the symbol’s time and index, respectively. That is, at every
time step n the source will choose one and only one symbol out of M alphabets in the set A. Since in the
present paper we deal with the fundamental theory of quantum MIMO, we will not include inter-symbol
interference and related digital transmission analysis and hence for simplicity we drop explicit mention
of the time index n. Consequently, we write

ai ∈ A = {a1, a2, ..., aM} .
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Next, the classical encoder (c-encoder) will transform these symbols into suitable pulses

si(t), i = 1, 2, ...,M,

that can be fed directly to the q-antennas for transmission through the channel. Finally, the classical
pulse si(t) will be radiated as a pure state |si〉 through the q-antenna. The entire q-SISO transmitter
can then be summarized by

ai
c-encoding−−−−−−→ si (t)

q-encoding−−−−−−→ |si〉 or ρi = |si〉 〈si| , (1)

where we also added the density operator representation

ρi = |si〉 〈si|
as an equivalent form of the radiated state when the latter is pure state like |si〉 as is the case here.
Note that when thermal noise is added to the system, the coherent state produced by the q-antenna
will be transformed into a mixed state. In the latter case, the use of the density operator formalism
becomes essential since the density operator with thermal noise cannot be factorized into a diagonal
form like |s〉〈s|. In other words, we have

|si〉 or ρi = |si〉 〈si| Thermal Noise Added−−−−−−−−−−−−−→ ρth
i , (2)

where ρth
i is a mixed state density operator containing all information about the original radiated pure

state |si〉 plus off-diagonal state-environment interactions caused by thermal noise. The q-transmitter
will also assign a set of probabilities

pi, i = 1, 2, ...,M,

for each radiated quantum state, which we define by

Pr {|s〉 = |si〉} := pi.

The proper choice of these probabilities amounts to what is usually termed pre-coding in classical MIMO
and is projected to be fundamental also in quantum MIMO system design. Overall, the q-transmitter
can be summarized as transforming the original classical alphabet set A to the quantum alphabet Aq,
i.e.,

|si〉 ∈ Aq = {|s1〉 , |s2〉 , ..., |sM 〉} ,

where the entire process is encapsulated by the q-coding map

Cq : A → Aq.

The minimum requirement that Cq must satisfy is being bijective (one-to-one) to ensure that each
original classical information symbol is uniquely mapped to one and only one quantum state for
transmission through the quantum channel. Note that an equivalent coding map can also be written
using the density operator. The receiver structure will be discussed directly in the next section when
we analyze the proposed q-MIMO system.

2.3. The Digital Quantum SISO Channel

Our goal next is to characterize the quantum channel using a suitable mathematical model. First, we
note that even while ignoring background (thermal) noise, quantum communication systems exhibit
an intrinsic (shot) noise due to the inherent non-deterministic character of quantum measurement
processes. Since all quantum receivers must involve one or more such measurement process, it follows
that the quantum channel is probabilistic exactly like the case of noisy classical channels. A quantum
measurement process is needed in order to effect the transition from the incoming quantum state |si〉
to classical numbers m (measurement valuations) that can be further processed. Traditionally, one
would assign one observable O (measurement operator) for every receiver. The operator O possesses an
eigenspace decomposition in the Hilbert space of the quantum system under consideration. According to
the quantum rules, the outcome of every measurement process is stochastically determined as one (and
only one) of the eigen states of O, with probability equal to the amplitude square of the corresponding
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eigenvalue. Let the projector operator system associated with the receiver measurement operator O
given by the projector system

{Pk, k = 1, 2, ...,K},
where K is the number of possible measurement outcomes, which we assume to be finite. Here, every
Pk is a projector operator projecting the measured state |si〉 onto one of the observable O potential
outcomes |mk〉, i.e., we have [12]

|si〉 Measurement through O−−−−−−−−−−−−−−−→ |mk〉 =
Pk |si〉

〈si|Pk |si〉 , k = 1, ...,K. (3)

Using the spectral decomposition theorem, the receiver observable O itself can be expanded as [12]

O =
∑

mk∈M
mkPk, (4)

where
M := σ(O) = {m1,m2, ...,mK}

is the spectrum of O consisting of the set of all possible measurement valuations.
Based on this notation, we can now compute the transition probabilities of the SISO quantum

channel as follows. Assume that symbol si was transmitted. Let the quantum receiver’s front-end
measurement operator be O. According to the quantum rules, the probability of detecting outcome mk

given si can be given by [11]

p (k|i) := Pr {|m〉 = |mk〉 ||si〉} = 〈si|Pk |si〉 , (5)

where i = 1, ..,M , k = 1, ..,K. It is also possible to express the same result more conveniently using the
density operator formalism. In that case, Equation (5) can be written as

p (k|i) = Pr {m = mk |ρi } = Tr {ρiPk} , (6)

for i = 1, ...,M , k = 1, ...,K. In this paper, Equation (6) will be used instead of Equation (5). The
quantum SISO channel matrix has the form

HSISO = [p (k|i)]K×M , (7)

an K × M matrix with elements given by Equation (6).

2.4. The Quantum SISO Digital Receiver

The final stage in the quantum SISO is the digital receiver, which is here mainly treated within the
existing framework of quantum decision theory [9]. That is, the last step needed in order to complete
the link is to transform the measured outcome mk into a decision about which one of the M transmitted
digital symbols si, i = 1, ...,M was transmitted. Post-measurement decision can be implemented by
decomposing the receiver measurement apparatus’ spectrum M into M disjoint sets Mj [9]

M =
⋃M

j=1
Mj . (8)

The decision circuit then consists of a map

D : M → Aq

from the receiver set of outcomes M to the set of originally transmitted quantum states Aq defined by

D(m) = |si〉 ⇐⇒ mk ∈ Mi. (9)

Therefore, the decision map D will construct an estimation of which state was originally transmitted
based on the measurements that the receiver apparatus O has produced. The design of the decision
circuit can then be fully reduced to the choice of the partition set Mj , j = 1, 2, ...,M, in (8).

To complete the analysis of the quantum SISO system, we need to compute the probability of
correct detection. The probability of correct detection of the ith symbol si is readily found to be

pc (si) = Pr {D(m) = |si〉| si} = Pr {∀k, mk ∈ Mi| si} .



Progress In Electromagnetics Research C, Vol. 93, 2019 147

However, since according to fundamental quantum theory various individual measurements are mutual
exclusive, i.e., the various events

m = m1,m = m2, ...,m = mK ,

cannot occur simultaneously, the probability of the universal statement above can be expanded as sum
of the probabilities of the individual propositional instantiations. In other words, we can write

pc (si) =
∑

mk∈Mi

Pr {mk| si} (10)

or using Equation (6)
pc (si) =

∑
mk∈Mi

Tr {ρiPk} (11)

Finally, the total probability of correct detection is

Pc =
M∑
i=1

pi

∑
mk∈Mi

Tr {ρiPk}, (12)

which is the average over all other symbols’ probabilities of correct detection weighed by their a priori
probabilities set by the q-encoder.

3. QUANTUM MIMO SYSTEM

Figure 1(a) shows the proposed basic (bare minimum) Tx quantum MIMO system. The information
stream consists of a succession of symbols si each chosen from the universal alphabet A as in q-SISO
systems discussed above. The q-MIMO encoder will distribute each symbol si into NT q-antennas that
in turn radiate NT pure coherent states

|sn
i 〉 or ρn

i = |sn
i 〉 〈sn

i | , n = 1, 2, ..., NT , i = 1, 2, ...,M,

where again we use either the vector or density operator formalism. These individual pure states can
also be associated with different coding schemes, here translated into a set of q-state a prior probabilities
which we denote by

pn
i , n = 1, 2, ..., NT , i = 1, 2, ...,M.

On the receiver side (see Fig. 1(b)), we place a set of NR measurement apparatus corresponding to the
operators

Oj , j = 1, 2, ..., NR .

The result of every operator measurement is a set of outcomes Mj with cardinality Kj . That is, in order
to profit from the additional richness of multipath environments, we allow the measurement operators
to be different at the Rx side in order to exploit this added complexity in the process of designing an
optimal receiver. Each Rx measurement operator Oj will produce an outcome

mj
k ∈ Mj ,

here labeled by the discrete index k taking values 1, 2, ...,Kj . Thus, in contrast to q-SISO systems, the
quantum MIMO decision must now deal with a considerably larger set of measured outcomes, namely
the

NR

NR∑
j=1

Kj

total possible measurement valuations that mj
k may assume. However, in order to simultaneously

measure the outcomes at all receivers, we assume that all measurement operators are commutative, i.e.,
mutually compatible. Mathematically, this translates into [11][

Oj , Oj′
]

= 0, for all j 	= j′. (13)

The vanishing of the commutator condition (13) will lead to considerable simplification in the analysis
and design of the q-MIMO digital receiver.
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(a) (b)

Figure 1. (a) Quantum MIMO system transmitting architecture. (b) Quantum MIMO system receiver
architecture. Here, HMIMO is the propagator operator of the wireless environment.

3.1. Quantum MIMO Channel Analysis

Every pure state emanating from an antenna in the Tx side will travel down through all possible paths
toward the receiver, generally reaching all nR measurement receivers. The transmitted state when all
q-antennas radiate together is the product state

ρtx
i = ρ1

i ⊗ ρ2
i ⊗ · · · ⊗ ρNT

i . (14)

However, each pure state ρn
i will travel through a different path (and hence environment) compared

to other fellow states with different n, leading to the need for explicitly taking into account the
transformation that each state will undergo while passing through the quantum channel as follows

ρn
i

Quantum MIMO Channel−−−−−−−−−−−−−−−−→ ρrx
in, (15)

where ρrx
in is the contribution to the total quantum state at the receiver made by the nth transmitted

state ρn
i . Note that this is a new state (possibly mixed) described by the density operator ρrx

in. The Rx
measurement operator, however, does not know in advance the exact decomposition of Equation (15),
and hence it is not possible to search for a composite measurement operator at each Rx site that can
measure every factor state ρrx

in in Equation (15). For that reason and in order to produce a realistic
description of the q-MIMO system, it is necessary to write the total Rx state in full at the Rx terminal.
Consequently, the received state at all measurement sites is given by the tensor product of individual
states coming from all NT Tx antennas. We have

ρrx
i = ρrx

i1 ⊗ ρrx
i2 ⊗ · · · ⊗ ρrx

in ⊗ · · · ⊗ ρrx
iNT

, (16)

where i = 1, ...,M . It can be shown using q-antenna theory that when thermal noise is added, every
factor state in Equation (16) becomes mixed provided that only radiating Glauber’s (coherent) states are
included (these propositions will be explicated by the author elsewhere but see the background theory
in [21]. Pending that, expression (16) can be treated for the purpose of this paper as an assumed model
of the q-MIMO channel.) For simplicity, we assume that the tensorial expression (16) provides the full
content of the multipath MIMO channel. However, the details of this state composition is not needed
for the particular q-MIMO receiver design to be given later. In fact, one would expect that quantum
evolution of the Tx state in open environments, which requires solving a suitable master equation, will
result in a Rx state different from the one given above [20]. Since the subject of quantum evolution
of MIMO states is outside the scope of this paper, we will not treat the subject further. However,
the form of Equation (16) can be compared with the mainstream uncorrelated Rayleigh channel model
used extensively in modeling the classic MIMO communication system [2, 3]. Indeed, in the latter case,
the various subchannels generated by the deployment of multiple antennas in the Tx and Rx terminals
are considered independent or at least uncorrelated. The model of Equation (16) is similar in this
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regard since it treats each transmitted q-state produced by one q-antenna as essentially independent
from others. While the q-MIMO Rx will not be able to always distinguish each of the factor states
in Equation (16) via direct quantum measurement, it is hoped nevertheless that the use of multiple
measurement processes and then combining them together (post-measurement processing) can improve
the overall performance of q-MIMO links in comparison to traditional q-SISO systems.

Note the fundamental difference between classical and quantum MIMO systems: In contrast to
the classical case, the Rx radiation state ρrx

i does not depend on position. Indeed, working with
the Heisenberg picture, the state is time independent while measurement operators (observables), for
instance, field strength, energy, momentum, spin, etc, are spacetime functions. The operators Oj are
then functions of r, although for simplicity we drop out this dependence. All q-MIMO receivers will
interact with essentially the same global state of Equation (16). However, it is very difficult to directly
calculate with Equation (16). In fact, in what follows we will not develop the digital receiver theory
based on such factorization according to paths because the latter is unknown to the receiver. Instead,
we rely on q-antenna theory to provide natural universal basis for the Hilbert space of the entire MIMO
system, say a set |l〉 indexed by l, and expand all (e.g., pure) states as

ρn
i =

∑
l

ainl |l〉 〈l|, ρjn
i =

∑
l

aijnl |l〉 〈l| , ρrx
i =

∑
l

ail |l〉 〈l| , etc. (17)

Indeed, when q-antennas are used for wireless quantum MIMO system realization, such a universal
computational basis exists, namely the Fock photon states, which can also be applied with some
modification to deal with mixed states.

3.2. Quantum MIMO Receiver Design

From the assumption in Equation (13), we know that there exist a common set of eigenspaces shared
by all measurement operators Oj , j = 1, ..., NR. Let the projector system associated with this MIMO
receivers eigenvalue decomposition be given by

Pk, k = 1, 2, ...,K. (18)

We will next construe all (generally not identical) spectral decompositions associated with the NR

operators Oj using the universal Rx projector system in Equation (18). However, even though the Rx
global q-state in Equation (16) possesses its own universal computational basis, namely the Fock state
representation of multi-mode coherent radiation modes, every measurement operator Oj at the q-MIMO
receiver will must be expressed in terms of its own Hilbert space Hj. Afterwards, the Rx MIMO state
ρrx

i may be expanded in every such Hilbert space into the corresponding complete set of eigen-basis,
i.e., the eigenvectors of the corresponding measurement operator. In other words, at the jth receiver,
a random variable mj, the result found by measuring the incident state ρrx

i by the Hermitian operator
Oj , will be assigned, with measured outcomes mj

k taking values in the set

Mj := σ(Oj),

i.e., the spectrum of the operator Oj itself. We further write

Kj := |Mj |,
so the cardinalities of the measurement sets at the receiver are not necessarily identical in order to allow
for more flexibility in designing the q-MIMO system in spatially diverse environments.

Based on this overall analysis, we are now in position to compute the MIMO channel matrix
connecting the emitting antennas and the receiver’s measurement devices. Let the spectrum of the jth
antenna operator Oj be

Mj := σ (Oj) =
{

mj
1,m

j
2, ...,m

j
Kj

}
.

Therefore, from the spectral decomposition theorem, Oj can be expanded as [12]

Oj =
∑

mj
k∈Mj

mj
kP

j
k , (19)
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where
P j

k , j = 1, 2, ..., NR , k = 1, 2, ...,Kj , (20)

is the projector system of the jth Rx measurement site.
It is interesting to see how from Equation (13) one may explicitly write

P j
k =

∑

k′∈Dj
k

Pk′ , (21)

where the sets Dj
k are defined by

k′ ∈ Dj
k ⇐⇒ mj = mj

k.

In other words, Dj
k is the index subset

Dj
k ⊂ {1, 2, ...,K}

containing the indices of all projectors Pk projecting the Rx state onto the eigenspace of Oj with
eigenvalue mj

k, where the operator P j
k now serves as a single projector for this eigenspace itself.

It now readily follows from the spectral decomposition theorem of Equation (19) and the quantum
rules that the probability of measuring the kth outcome mj

k ∈ Mj when sending the ith symbol via the
nth q-antenna is given by

p (k|inj) = Pr
{

mj = mj
k |ρrx

in

}
= Tr

{
ρrx

inP j
k

}
. (22)

This is a tensor of rank 4 expressed as

HMIMO = [p (k|inj)]K×M×NT×NR
(23)

capturing the full stochastic content of q-MIMO systems. Note that for a fixed k and i, expression (22)
corresponds to the NT × NR MIMO channel matrix in classical wireless communications.

If we now try to compute the probability of measuring mj
k given that the symbol si (i.e., the q-state

ρrx
i ) was transmitted before going through the NT q-antennas, then this can be put in the form

p (k|ij) = Pr
{
mj = mj

k |ρrx
i

}
= Pr

{
mj = mj

k |ρrx
i

}
, (24)

where use was made of Equations (14), (15), and (16). Consequently, basic quantum theory predicts
that [12]

p (k|ij) = Tr
{
ρrx

i P j
k

}
, (25)

which can be effectively calculated by means of a suitable universal computational Hilbert space basis
such as Fock states.

Next, our goal is to compute the transition probabilities of the MIMO system in order to prepare
for the design of an optimum receiver capable of maximizing the probability of correct detection. To do
this, a proper decision strategy at q-MIMO receiver circuit must be determined. Following a method
similar to the one ascribed to q-SISO systems [9, 10], we partition each receiver’s measurement spectrum
Mj into M disjoint subset as follows

Mj =
⋃M

l=1
Mj

l , j = 1, 2, ..., NR , (26)

where
Mj

l

⋂
Mj

l′ = ∅ ⇐⇒ l 	= l′.

The decision map DMIMO of the MIMO system will be constructed from the set of all measurements
mj at all receivers, i.e., we have

DMIMO :
∏NR

j=1
Mj → Aq, (27)

with explicit definition specified by

DMIMO(m) = |si〉 iff for all j = 1, ..., NR, mj
k ∈ Mj

i . (28)
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Here, m is the NR × 1 vector of all measurements

m := [m1 m2 ..... mNR ]T .

The probability of deciding that the lth symbol was sent given that the ith symbol was actually
transmitted, here denoted by p(l|i), is

p (l|i) = Pr
{

m1
k ∈ M1

l , · · · , mNR
k ∈ MNR

l |ρrx
i

}
(29)

The individual probabilities are now computed by

Pr
{
mj

k ∈ Mj
l |ρrx

i

}
=

∑

mj
k∈Mj

l

Tr
{
ρrx

i P j
k

}
, (30)

which may be re-expressed as

Pr
{
mj

k ∈ Mj
l |ρrx

i

}
= Tr

{
ρrx

i Qj
l

}
. (31)

Here, the operator Qj
l is defined by

Qj
l :=

∑

mj
k∈Mj

l

P j
k . (32)

It can be easily shown from Equation (32) that all of the MNR operators Qj
l are Hermitian. Moreover,

one may directly prove from the standard properties of the projector system P j
k that

Qj
l ≥ 0, (33)

that is the positive semi-definiteness of each receiver measurement operator. Moreover, we also have∑
l

Qj
l = IHj , (34)

which is the statement of completeness in Hj , the Hilbert space of the jth Rx measurement device.
Therefore, each of the j = 1, 2, ..., NR classes{

Qj
l , l = 1, 2, ...,M

}

constitutes a set of POVM operators (Positive Operator Valued Measures) [10] on the corresponding
receiver’s measurement Hilbert space Hj, and hence can serve as generalized receiver operators to be
determined by the final design process (see below).

Before moving to the evaluation of the probability of correct detection, we note that the construction
of the receiver POVM through Equation (32) in terms of the common projector system P j

k directly leads
to the conclusion that all of the operators Qj

l are idompotent, i.e., we have

Qj
l Q

j
l = Qj

l .

This can be proved by using Equation (32) to write

Qj
l Q

j
l =

∑

mj
k∈Mj

l

∑

mj

k′∈M
j
l

P j
k P j

k′ =
∑

mj
k∈Mj

l

P j
k = Qj

l , (35)

where the projector property
P j

k P j
k′ = P j

k δkk′ (36)

was utilized.
Since all operators Oj are commutative, the joint (29) probability is now readily found as [12]

p (l|i) = Tr

⎧⎨
⎩ρrx

i

NR∏
j=1

Qj
l

⎫⎬
⎭. (37)
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Now, the probability of correct detection of the ith symbol is

pc(i) := Pr {DMIMO(m) = |si〉| si} = p (i|i) . (38)

Therefore, from Equation (37) we find

p (i|i) = Tr

⎧⎨
⎩ρrx

i

NR∏
j=1

Qj
i

⎫⎬
⎭. (39)

Finally, the probability of correct of the q-MIMO is obtained by averaging over all symbols as follows

Pc =
M∑
i=1

piTr

⎧⎨
⎩ρrx

i

NR∏
j=1

Qj
i

⎫⎬
⎭. (40)

In order to design the q-MIMO receiver, we need to solve an optimization problem where we search
for NR × M POVM operators Q∗j

l , j = 1, 2, ..., NR, l = 1, 2, ...,M, such that

Q∗j
i = arg max

Qj
i

⎧⎨
⎩

M∑
i=1

piTr

⎧⎨
⎩ρrx

i

NR∏
j=1

Qj
i

⎫⎬
⎭

⎫⎬
⎭ (41)

under the constrains

Qj
i ≥ 0,

M∑
l=1

Qj
i = IHj , [Qj

i , Q
j′
i′ ] = δii′δjj′. (42)

This is the fundamental Rx design problem of MIMO digital communication systems, a nonlinear
constrained optimization problem that can be solved using numerical search algorithms.

We note that in contrast to Helstrom’s SISO theory, the quantum detection problem of MIMO
receivers is considerably more complicated since the cost function in Equation (41) is nonlinear.
Moreover, the actual radiation state ρrx impinging on the Rx must be estimated before embarking
on the process of solving the receiver design problem. This can be done using the quantum antenna
theory currently under development by the author, which attempts to describe the overall physical
structure of the radiation state in terms of coherent states. Details of the solution using this theory
and some numerical optimization results will be reported in future work. However, the basic q-MIMO
theory reported here is very general and is valid regardless of the physical realization method.

3.3. Channel Capacity in q-MIMO Systems

Effectively, we have managed to derive the stochastic channel matrix of a basic q-MIMO system through
expression (37), which gives the probability p(l|i) that the lth symbol sl is constructed at the digital
receiver given that the ith symbol si was transmitted. Note that this is valid even when noise is totally
ignored in the q-MIMO system. Indeed, assuming that thermal noise is not present, the incident density
operator ρrx

i becomes diagonal, i.e., corresponds to pure state [10]. In this case, only pure quantum
noise (shot noise) is present and the channel matrix is still probabilistic. This is in direct contrast with
classic communications where the system becomes deterministic when noise is ignored. The advantage
of our formulation so far is that by using the density operator formalism, there is no need to change the
derived expression when moving from zero thermal noise to thermal noise; indeed, the only difference
is that in the latter case, the density operator becomes mixed [12].

According to information theory, the mutual information between the the reconstructed symbol ŝ
and the transmitted symbol s is given by [1]

I (ŝ; s) =
M∑
i=1

M∑
l=1

pip (l|i) log
p (l|i)

M∑
i=1

pip (l|i)
. (43)
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Consequently, using Equation (37), expression (43) becomes

I (ŝ; s) =
M∑
i=1

M∑
l=1

Tr

⎧⎨
⎩piρ

rx
i

NR∏
j=1

Qj
l

⎫⎬
⎭ log

Tr

⎧⎨
⎩ρrx

i

NR∏
j=1

Qj
l

⎫⎬
⎭

M∑
i=1

Tr

⎧⎨
⎩piρ

rx
i

NR∏
j=1

Qj
l

⎫⎬
⎭

, (44)

Assuming that the receiver operators Ql
l are already available, e.g., by solving the optimization problem

in Equation (41), then the q-MIMO channel capacity can be found by solving the following maximization
problem

Cq-MIMO = max
pi

⎡
⎢⎢⎢⎢⎢⎢⎣

M∑
i=1

M∑
l=1

Tr

⎧⎨
⎩piρ

rx
i

NR∏
j=1

Qj
l

⎫⎬
⎭log

Tr

⎧⎨
⎩ρrx

i

NR∏
j=1

Qj
l

⎫⎬
⎭

M∑
i=1

Tr

⎧⎨
⎩piρ

rx
i

NR∏
j=1

Qj
l

⎫⎬
⎭

⎤
⎥⎥⎥⎥⎥⎥⎦

. (45)

In other words, capacity is the maximum possible mutual information over all allowable source
information distributions [1].

Note that in all such expressions above, the architecture of the transmitter is encoded in the inner
structure of the received quantum state ρrx

i , so knowledge of the q-antenna array and the propagation
environment is required in order to compute the channel capacity through Equation (45).

3.4. Discussion and Practical Issues

The general theory developed above does not exhaust what can be possibly done with quantum MIMO
system design, providing one possible system architecture among others. This particular design was
developed intentional in abstract setting in order to make it available to the largest number of possible
physical realizations. In this section, we briefly comment on the nature of the results attained and their
potential applications in existing and future nonclassical communication systems.

We begin by emphasizing that the electromagnetic background of the ultimate physical process
underlying our communication system dominates the proposed design. The reason is that we
intentionally build the transmitter in terms of quantum antennas, which are defined as classical
radiators producing nonclassical propagating states.† More specifically, the radiated q-states that
can be best utilized in our proposed architecture are either coherent states or squeezed states [22–
24], which are special pure quantum states of the radiation field derived using the standard second
quantization procedure [11]. Coherent states, for example, describe very well laser modes operating
above threshold [21], while squeezed states (inherently nonclassical states of light) are now available
in quantum optics experiments [25]. Therefore, the generation of specialized modulated and coded
quantum states is not currently a major issue and has already been done by several researchers, e.g.,
see reviews in [20, 28]. On the other hand, from the perspective of the practical implications of the
present paper, it is essentially the ability to spatially orientate quantum transmitters what makes
the system interesting from the viewpoint of applications since spatial re-positioning of independent
transmitting modules can lead to spatial multiplexing on one hand, and to potential enhancement
of interference-and-noise immunity (increasing probability of correct detection) if additional signal
processing or measurement operators design where introduced in the backend as is usually the case in
classical MIMO systems (the new signal processing in q-communications need not be identical though.)
Indeed, the quantum Rx system itself must utilize the ability to spatially reposition every measurement
device in order to “sample” the quantum state at different structural “viewpoints.” For example, the
combined Rx quantum state ρrx may contain distinct salient structural features that cannot be efficiently
probed by a single measurement device. The use of multiple devices in the Rx then can allow us to
† The fascinating subject of quantum antennas will be further discussed by the author somewhere else.
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exploit the ability to use spatial position as a “measurement design parameter” because from quantum
electrodynamics we know that different measurement operators can be produced by merely changing
the location of the measurement.‡

The last observation brings us to the second major practical application of our proposed MIMO
system architecture. Since spatial position at the Rx side can be utilized to “engineer” desired
measurement operators, the decomposition of the effective diversity-type q-MIMO Rx shown in Fig. 1(b)
into

∏
j Qj

l , such as those appearing in equations like (37) and (41), can be considered a practical method
to realize an optimum measurement operator in the lab. Indeed, since we start with a set of known or
realizable projector measurement operators, namely the universal set given in Equation (18), it follows
that the product form

∏
j Qj

l (r), where here we reinstate the dependence of the POVM Qj
l operator on

position (already implicit in the use of the index j to label different Rx measurement operators), allows
the designer greater freedom in synthesizing desired system equipment in the Rx terminal than what
would be the case with SISO or even MISO architectures. Examples of position-dependent operators
are extremely obvious in the case of electromagnetic (QED) measurements, which include electric and
magnetic fields strengths, photon numbers, spin, angular momentum, see [24] for extensive theoretical
discussion and [25] for experimental realization of these electromagnetic-type quantum measurements.

The new form of the optimum quantum detection scheme in Equation (41) with the constraints
of Equation (42) can be considered an expansion of the available number of degrees of freedom that the
engineer can draw on in his quest to develop and build more reliable wireless quantum communication
systems. It is indeed the underlying motivating philosophy behind MIMO research to exploit the
increased spatial complexity of the problem in order to design more complex but higher performance
generation of wireless communication systems. The architecture proposed in this paper can be realized
with electromagnetic infrastructure, but the full details of the implementation are quite extensive and
will be addressed elsewhere. First, we note that proper models of quantum antennas must be derived
and tested. Quantum channel modeling is already in general more well developed and several excellent
Gaussian channel models suitable for electromagnetic-type quantum communications are currently
available, see for instance [10, 20]. On the other hand, the receiver design process will require solving the
constrained general optimization problem in Equation (41), most probably numerically for the general
case. In outline, one must build the entire Hilbert space (theoretically infinite dimensional but should be
truncated for practical computations) then perform all calculations of the quantum antennas, channel
propagation, and receiver design offline in the simulator. It is hoped that the resulting system will
exhibit greater design options since it is already more complex, being richer in new spatial degrees of
freedom that can be tuned or optimized in order to best attain target link performance metrics.

4. CONCLUSION

We proposed a basic quantum MIMO architecture suitable for applications involving spatial diversity
and optimum quantum digital receiver design, with the main goal being increasing the reliability of
wireless quantum communication systems transmitting classical information over quantum channels.
It was found that a class of commuting measurement operators at the receiver can be used to design
optimum Rx structures by solving a nonlinear constrained optimization problem to find the best POVM
operators realizing combined measurement and decision processes. The use of multiple measurement
devices at the Rx terminal is expected to have several applications. One of them is the ability to
relax the conditions of implementing the optimum SISO POVM operators by allowing several different
but readily realizable operators to collectively interact with each other in order to synthesize a total
MIMO optimum Rx POVM. Also, the use of spatial processing via enacting multiple measurements at
various positions can be profitably exploited to increase the designers resources since it allows additional
degrees of freedom to become available. It is expected that an electromagnetic physical realization of
the proposed system architecture has a very promising practical prospect since it would allow using
positions of quantum antennas at the transmitter, and quantum measurement operators at the receiver,
to allow for joined optimum fine tuning of the overall system performance.
‡ Technically, we work here in the Heisenberg picture where the fields are assumed as time-dependent measurement operators evolving
with time while automatically functions of r.
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