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Shielding of a Perfectly Conducting Circular Disk: Exact and Static
Analytical Solution

Giampiero Lovat1, *, Paolo Burghignoli2, Rodolfo Araneo1, Salvatore Celozzi1,
Amedeo Andreotti3, Dario Assante4, and Luigi Verolino3

Abstract—The problem of the shielding evaluation of an infinitesimally thin perfectly conducting
circular disk against a vertical magnetic dipole is here addressed. The problem is reduced to a set of
dual integral equations and solved in an exact form through the application of the Galerkin method
in the Hankel transform domain. It is shown that a second-kind Fredholm infinite matrix-operator
equation can be obtained by selecting a complete set of orthogonal eigenfunctions of the static part of
the integral operator as expansion basis. A static solution is finally extracted in a closed form which is
shown to be accurate up to remarkably high frequencies.

1. INTRODUCTION

The interaction of electromagnetic waves with a circular metal disk constitutes a classical diffraction
problem that, along with its Babinet-complementary problem of diffraction by a circular hole in an
infinite metal plate, has received considerable interest in the literature of the last decades (see, e.g., [1–
16] and references therein). Such a canonical configuration is in fact of interest for scattering (e.g.,
radar cross-section evaluation), antennas, as well as electromagnetic-shielding problems.

In this paper we consider the incidence of spherical waves produced by a point source placed at
a finite distance from a circular perfectly-conducting (PEC) disk, namely a Vertical Magnetic Dipole
(VMD) placed along the axis of azimuthal symmetry of the structure. This canonical source constitutes
a valid representation for a practical small electric-loop radiator parallel to the disk and co-axial with
it.

The formulation of the problem is first presented in Section 2, and operating in the Hankel transform
domain, a set of dual integral equations (whose unknown is the surface current density induced on the
PEC disk) is derived. An exact numerical solution, valid in any frequency range, is obtained in Section 3
through the application of Galerkin’s Method of Moments choosing a set of orthogonal eigenfunctions of
the static part of the involved integral operator as expansion functions for the surface current induced
on the disk. It is shown that such functions allow for a rapidly convergent representation of the unknown
since they reconstruct the physical behavior of the surface current density both at the center and at
the edges of the disk. The rapidly converging properties of such a numerical solution are also improved
by a suitable series representation of the elements of the impedance matrix. One very interesting
result of the present work (presented in Section 4) is that, thanks to different integral identities, the
static-limit solution can be extracted in a closed form, and such a closed form is shown to be accurate
up to remarkably high frequencies, depending on the involved geometric parameters of the problem.
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It is important to point out, as rigorously shown in Section 5, that the proposed solution scheme
fits into the more general method of analytical regularization already proposed with success in the
literature [9, 12, 15, 16]. Finally, in Section 6, the conclusions of the present investigation are drawn.

2. FORMULATION OF THE PROBLEM

The configuration under analysis consists of an infinitesimally thin, perfectly conducting (PEC) circular
disk of radius a placed on the plane z = 0 of a cylindrical coordinate system (ρ, φ, z) with center at the
origin and a vertical magnetic dipole (VMD) with magnetic dipole moment m placed along the z axis
at a height z = h (see Fig. 1) and coaxial with it. The vertical magnetic dipole can effectively model a
small current loop parallel to the plane z = 0 and coaxial with the disk. The electromagnetic problem
is axially symmetric so that all the fields depend only on ρ and z. Time-harmonic sources and fields
are assumed with an implicit ej ωt dependence.

VMD
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x

Figure 1. Configuration under analysis: a vertical magnetic dipole (VMD) radiates in the presence
of a circular perfectly conducting (PEC) disk with radius a and of negligible thickness. The VMD is
axially symmetric with respect to the disk and placed at a distance h from it.

2.1. Electric Field of a Current Loop

We first consider an electric current loop of radius ρ0 placed over the plane z = z0. Therefore

J(ρ, z) = Jφ(ρ, z)uφ = P0
δ(ρ − ρ0)

ρ
δ(z − z0)uφ (1)

where P0 is a suitable coefficient. The vector potential A has only the component Aφ which must satisfy
the Helmholtz equation, which in cylindrical coordinates reads

∂2Aφ

∂z2
+

1
ρ

∂

∂ρ

(
ρ
∂Aφ

∂ρ

)
− Aφ

ρ2
+ k0Aφ = −μ0Jφ (2)

where k0 is the free-space wavenumber. By introducing the Hankel transform of order 1 defined as [17]

F̃ (λ) = H1{F (ρ)} =
∫ ∞

0
ρF (ρ)J1(λρ)dρ

F (ρ) = H−1
1 {F̃ (λ)} =

∫ ∞

0
λF̃ (λ)J1(λρ)dλ

(3)

where J1 (·) is the first-kind Bessel function of order 1, we have [17]

∂2Ãφ

∂z2
− λ2Ãφ + k2

0Ãφ = −μ0J̃φ (4)
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By letting kz =
√

k2
0 − λ2 = −j

√
λ2 − k2

0 and by Hankel-transforming the current (1) (which samples
the Bessel function J1 in ρ0) we obtain

∂2Ãφ

∂z2
+ k2

zÃφ = −μ0P0J1 (λρ0) δ(z − z0) (5)

whose solution is

Ãφ (λ, z) = μ0P0J1 (λρ0)
e−j kz|z−z0|

2j kz
(6)

By Hankel inverse-transforming, we thus have

Aφ (ρ, z) =
μ0P0

2j

∫ ∞

0

e−j kz|z−z0|

kz
J1 (λρ0) J1 (λρ) λdλ (7)

Since ∇ · A = 0, it follows that E = −j ωA and therefore

Eφ (ρ, z) = −k0ζ0P0

2

∫ ∞

0

e−j kz|z−z0|

kz
J1 (λρ0)J1 (λρ)λdλ (8)

where ζ0 is the free-space characteristic impedance.

2.2. Electric Field of a Current Disk

By considering a disk of radius a placed in z0 = 0, with a current density J(ρ, z) = JSφ(ρ)δ(z)uφ, by
integrating (8) with P0 = ρ0JSφ(ρ0), we obtain

Eφ (ρ, z) = −k0ζ0

2

∫ a

0
ρ0JSφ(ρ0)

∫ ∞

0

e−j kz |z|

kz
J1 (λρ0) J1 (λρ) λdλdρ0 (9)

and rearranging

Eφ (ρ, z) = −k0ζ0

2

∫ ∞

0

(∫ a

0
ρ0JSφ(ρ0)J1 (λρ0) dρ0

)
e−j kz|z|

kz
J1 (λρ) λdλ (10)

By introducing the Hankel transform of the current density, we have

Eφ (ρ, z) = −k0ζ0

2

∫ ∞

0
J̃Sφ(λ)

e−j kz |z|

kz
J1 (λρ) λdλ (11)

2.3. Electric Field of a Magnetic Dipole

By indicating the moment of a current loop placed in z0 = h with |m| = Iπρ2
0, the relevant electric field

is expressed as

Einc
φ (ρ, z) = −k0ζ0|m|

2πρ0

∫ ∞

0

e−j kz |z−h|

kz
J1 (λρ0) J1 (λρ) λdλ (12)

In the limit ρ0 → 0 (since J1 (x) � x/2), we obtain

Einc
φ (ρ, z) = −k0ζ0|m|

4π

∫ ∞

0

e−j kz|z−h|

kz
J1 (λρ) λ2dλ (13)

2.4. Boundary Condition

Since we assume a perfectly conducting disk, the tangential component (i.e., the φ component) of the
total electric field E vanishes at z = 0 for ρ < a, i.e.,

Escat
φ (ρ, z = 0) + Einc

φ (ρ, z = 0) = 0 (14)

By using Eqs. (11) and (13) for z = 0 and ρ < a, we thus have

−k0ζ0

∫ ∞

0

1
2kz

J1 (λρ) J̃Sφ(λ)λdλ − k0ζ0|m|
∫ ∞

0

e−j kzh

4πkz
J1 (λρ)λ2dλ = 0 (15)
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i.e., ∫ ∞

0

1
kz

J1 (λρ) J̃Sφ(λ)λdλ +
|m|
2π

∫ ∞

0

e−j kzh

kz
J1 (λρ) λ2dλ = 0 (16)

This equation and the condition for which the current density vanishes for ρ > a constitute a system of
dual integral equations. By rearranging we obtain∫ ∞

0

1
kz

(
J̃SΦ(λ) +

|m|λ
2π

e−j kzh

)
J1 (λρ) λdλ = 0 , ρ < a

∫ ∞

0
J̃Sφ (λ)J1 (λρ)λdλ = 0 , ρ > a

(17)

3. GALERKIN METHOD-OF-MOMENTS SOLUTION

The unknown current density JSφ can be expanded through a set of basis functions bn (ρ) whose
transform b̃n (λ) should automatically satisfy the second in Eq. (17) and correctly reproduce the singular
behavior of the current in ρ = a. Therefore we must have∫ ∞

0
b̃n (λ)J1 (λρ)λdλ = 0 (18)

for ρ > a and

bn (ρ) =
∫ ∞

0
b̃n (λ) J1 (λρ) λdλ ∝ 1√

a2 − ρ2
(19)

for ρ < a. Moreover, in the origin the value of bn has to be finite or, better, identically zero.
A possible set of basis functions is therefore provided by the following integral identity [18]

∫ +∞

0

J2m−1+k(λa)

(λa)k
J1(λρ)λdλ =

⎧⎪⎨
⎪⎩

0 ρ > a

B (m,k)
a2k+1

ρ
(
a2 − ρ2

)k−1
P

(1,k−1)
m−1

(
1 − 2ρ2

a2

)
ρ < a

(20)

where
B (m,k) =

(m − 1)!
2k−1Γ (m + k − 1)

(21)

and P
(α,β)
n (·) are the Jacobi polynomials of order n and Γ (·) is the Gamma function. Therefore

H−1
1

{
J2m−1+k(λa)

(λa)k

}
=

B (m,k)
a2k+1

ρ
(
a2 − ρ2

)k−1
P

(1,k−1)
m−1

(
1 − 2ρ2

a2

)
u−1 (a − ρ) (22)

We can thus adopt the following set of basis functions:

bn (ρ) =

⎧⎪⎨
⎪⎩

0 ρ > a√
2(n − 1)!

Γ (n − 1/2)
ρ

a
√

a2 − ρ2
P

(1,−1/2)
n−1

(
1 − 2ρ2

a2

)
, n = 1, 2, . . . ρ < a

(23)

which satisfy all the required conditions and whose Hankel transforms are

b̃n (λ) =
√

a

λ
J2n−1/2(λa) (24)

We can thus express

JSφ (ρ) =
+∞∑
n=1

inbn (ρ) (25)
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and

J̃Sφ (λ) =
+∞∑
n=1

inb̃n (λ) (26)

By using the basis-function expansion and projecting on the generic basis function bm (ρ) we obtain∫ a

0
ρbm (ρ)

∫ ∞

0

1
kz

∞∑
n=1

inb̃n (λ) J1 (λρ) λdλdρ = −
∫ a

0
ρbm (ρ)

∫ ∞

0

|m|λ
2πkz

e−j kzhJ1 (λρ)λdλdρ (27)

By truncating the expansion of the current density to N basis functions we have
N∑

n=1

in

∫ ∞

0
b̃m (λ)

1
kz

b̃n (λ) λdλ = −
∫ ∞

0
b̃m (λ)

|m|λ2

2πkz
e−j kzhdλ, m = 1, . . . , N (28)

i.e,
N∑

n=1

inZmn = Vm, m = 1, . . . , N (29)

where

Zmn =
∫ ∞

0

b̃m (λ) b̃n (λ)
kz

λdλ (30)

and

Vm = −
∫ ∞

0
b̃m (λ)

|m|λ2

2πkz
e−j kzhdλ (31)

The solution of the algebraic system in Eq. (29) furnishes the coefficients in, and the current density
JSφ is recovered through Eq. (25).

In particular, from Eqs. (30) and (24) we have

Zmn =
∫ ∞

0

√
a

λ
J2m−1/2(λa)

√
a

λ
J2n−1/2(λa)

1√
k2

0 − λ2
λdλ = a

∫ ∞

0

J2m−1/2(λa)J2n−1/2(λa)√
k2

0 − λ2
dλ (32)

In general, the improper integrals in Eq. (32) are highly oscillating and slowly decaying. However, as
shown in [16], they can be transformed in∫ ∞

0

J2m−1/2(λa)J2n−1/2(λa)√
k2

0 − λ2
dλ =

∫ π/2

0
J2m−1/2(k0a sin t)H(2)

2n−1/2(k0a sin t)dt (33)

if m ≥ n, where H
(2)
ν (·) is the second-kind Hankel function of order ν, and∫ ∞

0

J2m−1/2(λa)J2n−1/2(λa)√
k2

0 − λ2
dλ =

∫ π/2

0
J2n−1/2(k0a sin t)H(2)

2m−1/2(k0a sin t)dt (34)

if n > m so that

Zmn = a

∫ π/2

0
J2max{m,n}−1/2(k0a sin t)H(2)

2min{m,n}−1/2(k0a sin t)dt (35)

It can immediately be seen that the matrix [Zmn] is symmetric, i.e., Zmn = Znm.
Alternatively, the integrals in Eq. (32) can be evaluated through a rapidly converging series as [19]

∫ ∞

0

J2m−1/2(λa)J2n−1/2(λa)√
k2

0 − λ2
dλ =

(−1)p

2k0a

+∞∑
l=1

(−l + 1
2

)
p

(
− l

2

)
q

(j k0a)l

Γ
(

l + 1
2

+ p

)
Γ
(

l

2
+ q

)
Γ
(

l + 1
2

) (36)
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where p = n − m, q = n + m and (x)y is the Pochhammer symbol defined as

(x)y =
Γ (x + y)

Γ (x)
(37)

so that

Zmn = j
(−1)n−m a

2

+∞∑
l=1

Γ
(

l

2

)
Γ
(−l + 1

2
+ n − m

)
Γ
(
− l

2
+ n + m

)
(j k0a)l−1

Γ
(

l + 1
2

)
Γ
(−l + 1

2

)
Γ
(−l + 2

2

)
Γ
(

l − 1
2

+ n − m

)
Γ
(

l

2
+ n + m

) (38)

As concerns the known term, we have

Vm = −
∫ ∞

0

√
a

λ
J2m−1/2(λa)

|m|λ2

2πkz
e−j kzhdλ = −|m|√a

2π

∫ ∞

0
J2m−1/2(λa)λ3/2 e−j

√
k2
0−λ2h√

k2
0 − λ2

dλ (39)

3.1. Electric and Magnetic Fields

Once the in coefficients are known (and thus the current JSφ as well), the radiated electric field is given
by

Eφ (ρ, z) = Einc
φ (ρ, z) + Escat

φ (ρ, z) (40)
where

Einc
φ (ρ, z) = −k0ζ0|m|

4π

∫ ∞

0

e−j kz|z−h|

kz
J1 (λρ) λ2dλ (41)

and

Escat
φ (ρ, z) = −k0ζ0

2

N∑
n=1

in

∫ ∞

0
b̃n (λ)

e−j kz |z|

kz
J1 (λρ) λdλ (42)

The magnetic field is instead given by

H (ρ, z) = −∇× E
j k0ζ0

=
j

k0ζ0

[
−∂Eφ

∂z
uρ +

1
ρ

∂

∂ρ
(ρEφ)uz

]
(43)

and therefore

H inc
ρ (ρ, z) =

|m|
4π

∫ ∞

0
e−j kz |z−h|J1 (λρ)λ2dλ (44)

H inc
z (ρ, z) = −j

|m|
4π

∫ ∞

0

e−j kz |z−h|

kz
J0 (λρ) λ3dλ (45)

and

Hscat
ρ (ρ, z) =

1
2

N∑
n=1

in

∫ ∞

0
b̃n (λ) e−j kz |z|J1 (λρ) λdλ (46)

Hscat
z (ρ, z) = − j

2

N∑
n=1

in

∫ ∞

0
b̃n (λ)

e−j kz|z|

kz
λ2J0 (λρ) dλ (47)

We thus have

Escat
φ (ρ, z) = −k0ζ0

√
a

2

N∑
n=1

in

∫ ∞

0
J2n−1/2(λa)J1 (λρ)

√
λ

e−j
√

k2
0−λ2|z|√

k2
0 − λ2

dλ (48)

Hscat
ρ (ρ, z) =

√
a

2

N∑
n=1

in

∫ ∞

0
J2n−1/2(λa)J1 (λρ)

√
λe−j

√
k2
0−λ2|z|dλ (49)

Hscat
z (ρ, z) = − j

√
a

2

N∑
n=1

in

∫ ∞

0
J2n−1/2(λa)J0 (λρ) λ3/2 e−j

√
k2
0−λ2|z|√

k2
0 − λ2

dλ (50)
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4. STATIC SOLUTION

It is interesting to note that in the static limit (i.e., k0 → 0) the elements Zmn in Eq. (32) become

Zmn = j a
∫ ∞

0

J2m−1/2(λa)J2n−1/2(λa)
λ

dλ (51)

Such an integral can be evaluated in a closed form using the identity [20, 6.574]

∫ ∞

0
Jν(αt)Jμ(αt)t−λdt =

αλ−1Γ (λ) Γ
(

ν + μ − λ + 1
2

)

2λΓ
(−ν + μ + λ + 1

2

)
Γ
(

ν + μ + λ + 1
2

)
Γ
(

ν − μ + λ + 1
2

) (52)

valid for ν + μ + 1 > λ > 0 and α > 0. In fact, by letting ν = 2m − 1/2, μ = 2n − 1/2, α = a, t = λ,
and λ = 1, we have

Zmn =
j aΓ

(
m + n − 1

2

)

2Γ (n − m + 1) Γ
(

m + n +
1
2

)
Γ (m − n + 1)

(53)

On the other hand, the integral in Eq. (51) is the product of two orthogonal functions: therefore, as
can be verified by observing the denominator in Eq. (53) (which is always infinite except for the case
m = n), we have Zmn = 0 for m �= n and

Znn =
j a
2

Γ
(

2n − 1
2

)

Γ
(

2n +
1
2

) (54)

It is worth noting that the result in Eq. (54) can also be obtained from Eq. (38), by observing that in
the static limit only the term l = 1 of the series is different from zero. By considering the property of
the Gamma function for which

Γ(z + 1) = zΓ(z) (55)

Eq. (54) can also be expressed in a simpler way as

Znn =
j a

(4n − 1)
(56)

Concerning the known term, from Eq. (39), in the static limit we have

Vm = −j
|m|√a

2π

∫ ∞

0
J2m−1/2(λa)

√
λe−λhdλ (57)

Also the latter integral can be expressed in a closed form by using the identity [20, 6.621]∫ ∞

0
e−αxJν(βx)xμ−1dx =

(
α2 + β2

)−μ/2 Γ(ν + μ)P−ν
μ−1

[
α
(
α2 + β2

)−1/2
]

(58)

valid for α > 0, β > 0, ν + μ > 0, and where P ν
μ (·) are the associated Legendre functions of the first

kind. In fact, by letting α = h, ν = 2m − 1/2, β = a, and μ = 3/2, we thus have

Vm = −j
|m|
2π

(2m)!
√

a

(a2 + h2)3/4
P

−2m+1/2
1/2

[
h
(
a2 + h2

)−1/2
]

(59)

By collecting all the results, we have
N∑

n=1

inZmn = Vm, m = 1, . . . , N (60)
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where

Zmn =

⎧⎨
⎩

0 m �= n
j a

(4n − 1)
m = n

(61)

and

Vm = −j
|m|
2π

(2m)!
√

a

(a2 + h2)3/4
P

−2m+1/2
1/2

[
h√

a2 + h2

]
(62)

Since the system is diagonal, we immediately obtain

in = −|m|
2π

(2n)! (4n − 1)√
a (a2 + h2)3/4

P
−2n+1/2
1/2

[
h√

a2 + h2

]
(63)

so that, from Eq. (25), in the static limit we have

JSφ(ρ) = − |m|
+∞∑
n=1

(2n)!(n − 1)! (4n − 1)√
2πΓ (n − 1/2) a3/2 (a2 + h2)3/4

P
−2n+1/2
1/2

[
h√

a2 + h2

]

· ρ√
a2 − ρ2

P
(1,−1/2)
n−1

(
1 − 2ρ2

a2

) (64)

The excellent convergence properties of the basis functions and the behavior of the surface current
as a function of the ratio r/a for different values of h/a are reported in Fig. 2.

It is also interesting to observe the variation of the surface current as a function of the radius a for
a fixed value of h = 30 cm, as shown in Fig. 3.

From Eqs. (41), (44), and (48)–(50), in the static limit we also have Eφ = 0 and

H inc
ρ (ρ, z) =

|m|
4π

∫ ∞

0
e−λ|z−h|J1 (λρ) λ2dλ (65)

H inc
z (ρ, z) =

|m|
4π

∫ ∞

0
e−λ|z−h|J0 (λρ) λ2dλ (66)

and

Hscat
ρ (ρ, z) =

√
a

2

N∑
n=1

in

∫ ∞

0
J2n−1/2(λa)J1 (λρ)

√
λe−λ|z|dλ (67)

Hscat
z (ρ, z) =

√
a

2

N∑
n=1

in

∫ ∞

0
J2n−1/2(λa)J0 (λρ)

√
λe−λ|z|dλ (68)

All these integrals can be evaluated in a closed form. In particular, for the integrals in Eqs.
(65)–(66), using the identity in Eq. (58), we have

H inc
ρ (ρ, z) =

3|m|
2π (|z − h|2 + ρ2)3/2

P−1
2

(
|z − h|√|z − h|2 + ρ2

)
(69)

H inc
z (ρ, z) =

|m|
2π (|z − h|2 + ρ2)3/2

P 0
2

(
|z − h|√|z − h|2 + ρ2

)
(70)

valid for |z − h| > 0. By letting

cos θ =
|z − h|√|z − h|2 + ρ2

, sin θ =
ρ√|z − h|2 + ρ2

(71)

and since

P−1
2 (x) =

x
√

1 − x2

2
(72)
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Figure 2. Surface current density as a function of ρ/a for different values of h/a and using a different
number N of basis functions. (a) h/a = 10; (b) h/a = 5; (c) h/a = 2; (d) h/a = 1.1. The curves are
superimposed from N = 1 in (a) and (b), from N = 2 in (c), and N = 3 in (d). Parameters: a = 5cm,
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and

P 0
2 (x) =

3x2 − 1
2

(73)

we obtain
H inc

ρ (ρ, z) =
3|m| cos θ sin θ

4π (|z − h|2 + ρ2)3/2
(74)

and

H inc
z (ρ, z) =

|m| (2 cos2 θ − sin2 θ
)

4π (|z − h|2 + ρ2)3/2
(75)

which are well-known results [21].
For the calculation of the scattered field, the following identity can be used [20, 6.626]:∫ ∞

0
xλ−1e−αxJμ(βx)Jν(γx)dx =

βμγν

Γ(ν + 1)
2−ν−μα−λ−μ−ν

·
∞∑

m=0

Γ(λ + μ + ν + 2m)
m!Γ(μ + m + 1)

F

(
−m,−μ − m; ν + 1;

γ2

β2

)(
− β2

4α2

)m (76)

valid for λ + μ + ν > 0 and α > 0, where F (·, ·; ·; ·) are the Gauss hypergeometric functions. In the
integrals in Eqs. (67)–(68) we use λ = 3/2, α = |z|, μ = 2n−1/2, β = a, γ = ρ, and ν = 1 (for Eq. (67))
or 0 (for Eq. (68)). Therefore

Hscat
ρ (ρ, z)=ρ

∞∑
n=1

in
a2n

22n+3/2|z|2n+2

∞∑
m=0

(−1)m (2m + 2n + 1)!
m!Γ(2n + m + 1/2)

F

(
−m,−2n − m +

1
2
; 2;

ρ2

a2

)(
a2

4|z|2
)m

(77)
and

Hscat
z (ρ, z)=

∞∑
n=1

in
a2n

22n+1/2|z|2n+1

∞∑
m=0

(−1)m (2n + 2m)!
m!Γ(2n + m + 1/2)

F

(
−m,−2n − m +

1
2
; 1;

ρ2

a2

)(
a2

4|z|2
)m

(78)
valid for |z| > 0.

Alternatively, it can be recognized that the integrals in Eqs. (67)–(68) are Lipschitz-Hankel type
integrals for which different representations exist [22].

For observation points along the z axis (i.e., for ρ = 0 and thus θ = 0), the incident field is simply

H inc
ρ (0, z) = 0 (79)

H inc
z (0, z) =

|m|
2π (|z − h|)3 (80)

For the scattered field we instead have
Hscat

ρ (0, z) = 0 (81)
and

Hscat
z (0, z) =

∞∑
n=1

in
a2n

22n+1/2|z|2n+1

∞∑
m=0

(−1)m(2n + 2m)!
m!Γ(2n + m + 1/2)

(
a2

4|z|2
)m

(82)

since F (·, ·; ·; 0) = 1. Alternatively, from Eq. (68), when ρ = 0 we have

Hscat
z (0, z) =

√
a

2

∞∑
n=1

in

∫ ∞

0
J2n−1/2(λa)

√
λe−λ|z|dλ (83)

The integral in Eq. (83) can be solved in a closed form by using the identity in Eq. (58) with x = λ,
α = |z|, ν = 2n − 1/2, β = a, and μ = 3/2, thus obtaining

Hscat
z (0, z) =

√
a

2

∞∑
n=1

in
(2n)!

(|z|2 + a2)3/4
P

−(2n−1/2)
1/2

(
|z|√

|z| + a2

)
(84)
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Figure 4. Scattered magnetostatic field along the z axis (ρ = 0) as a function of |z|/a for different
values of h/a. (a) h/a = 10; (b) h/a = 5; (c) h/a = 2; (d) h/a = 1.1. The curves are superimposed
from N = 1 in (a) and (b), from N = 2 in (c), and N = 3 in (d). Parameters: a = 5 cm, |m| = 1 Am2.

The excellent convergence properties of the basis functions and the behavior of the magnetostatic
field along the z axis as a function of the ratio |z|/a for different values of h/a are reported in Fig. 4.

It is worth noting that for sources sufficiently far from the disk, only one basis function is sufficient
to reach an excellent convergence so that in these cases

Hscat
z (0, z) � i1

√
a

(|z|2 + a2)3/4
P

−3/2
1/2

(
|z|√|z| + a2

)
(85)

where

i1 = −|m|
π

2Γ
(

2 +
1
2

)

Γ
(

2 − 1
2

) 1
√

a (a2 + h2)3/4
P

−3/2
1/2

(
h√|h|2 + a2

)
(86)

By letting

cos θz =
|z|√|z|2 + a2

, cos θh =
h√|h|2 + a2

(87)
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and using Eq. (55) we thus obtain

Hscat
z (0, z) � −3

|m|
π

P
−3/2
1/2 (cos θh)

(a2 + h2)3/4

P
−3/2
1/2 (cos θz)

(|z|2 + a2)3/4
(88)

so that the total magnetostatic field along the symmetry axis is

Htot
z (0, z) � |m|

2π

⎧⎨
⎩ 1

(|z − h|)3 − 6
P

−3/2
1/2 (cos θh)

(a2 + h2)3/4

P
−3/2
1/2 (cos θz)

(|z|2 + a2)3/4

⎫⎬
⎭ (89)

The magnetostatic shielding effectiveness SEH along the z axis can thus be evaluated as

SEH = 20 log

∣∣H inc
z (0, z)

∣∣
|Htot

z (0, z)| (90)

Some numerical results for a disk with a = 5 cm are reported in Fig. 5.
It is very interesting to note that the static approximation provides accurate results up to relatively

high frequencies. In Fig. 6 the static and exact frequency-dependent magnetic shielding effectiveness
SEH are reported for different frequencies and observation points for the cases h/a = 10 and h/a = 2.
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Figure 5. Magnetostatic shielding effectiveness SEH along the semi-axis z < 0 as a function of |z|/a
for different values of h/a. Parameters: a = 5 cm.
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The exact frequency-dependent magnetic shielding effectiveness has been obtained through Eqs. (45)
and (50) with ρ = 0.

5. APPLICATION OF THE METHOD OF ANALYTICAL REGULARIZATION
(MAR)

It is interesting to observe that the proposed solution can be effectively put in the framework of the
method of analytical regularization (MAR) [9, 15]. In fact, the set of dual integral equations which solve
the problem is ∫ ∞

0
J̃Sφ (λ) J1 (λρ) λdλ = 0 , ρ > a∫ ∞

0

J̃SΦ(λ)J1 (λρ)
kz

λdλ =
|m|
2π

∫ ∞

0

λ

kz
e−j kzhJ1 (λρ)λdλ , ρ < a

(91)

with basis functions given by Eq. (23) whose Hankel transform are expressed in Eq. (24). The latter
are orthogonal in the range λ ∈ (0,+∞), i.e.,∫ ∞

0
b̃m (λ) b̃n (λ) dλ = δmn (92)

Therefore, as already discussed, by letting

JSφ (λ) =
+∞∑
n=1

inbn (λ) (93)

the first equation in (91) is automatically satisfied. In the static limit, the weight function in the
left-hand side of the second of (91) becomes

1
kz

−→ j
λ

(94)

and the second equation in Eq. (91) can be divided in a static and a dynamic part by expressing
1
kz

=
j
λ

+ Ω (λ) (95)

where

Ω (λ) =

[
1√

k2
0 − λ2

− j
λ

]
(96)

Thanks to such an extraction and to the expansion in Eq. (93), the static part of the second equation
in Eq. (91) can be diagonalized and analytically inverted by using the transform in Eq. (24) and the
orthogonality property of the Bessel functions in Eq. (92). In particular, following the procedure used
in the application of the Method of Moments, we have∫ a

0
ρbm (ρ)

∫ ∞

0

j
λ

N∑
n=1

inb̃n (λ)J1 (λρ)λdλdρ +
∫ a

0
ρbm (ρ)

∫ ∞

0
Ω (λ)

N∑
n=1

inb̃n (λ) J1 (λρ) λdλdρ =

−
∫ a

0
ρbm (ρ)

∫ ∞

0

|m|λ
2πkz

e−j kzhJ1 (λρ) λdλdρ, m = 1, . . . , N

(97)

i.e.,

j
N∑

n=1

in

∫ ∞

0
b̃m (λ) b̃n (λ) dλ +

N∑
n=1

in

∫ ∞

0
b̃m (λ) Ω (λ) b̃n (λ) λdλ = −

∫ ∞

0
b̃m (λ)

|m|λ2

2πkz
e−j kzhdλ (98)

for m = 1, . . . , N and therefore

j im +
N∑

n=1

in

∫ ∞

0
b̃m (λ) b̃n (λ)Ω (λ) λdλ = −

∫ ∞

0
b̃m (λ)

|m|λ2

2πkz
e−j kzhdλ (99)
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which can also be expressed as

im +
N∑

n=1

inẐmn = V̂m (100)

where
Ẑmn = −j

∫ ∞

0
b̃m (λ) b̃n (λ) Ω (λ)λdλ (101)

and

V̂m = j
∫ ∞

0
b̃m (λ)

|m|λ2

2πkz
e−j kzhdλ (102)

We thus have a matrix equation of the kind

[im] +
[
Ẑmn

]
[in] = [Vm] (103)

Since the asymptotic expansion of the Bessel functions for large orders results in [20] [20]

Jν(z) ∼ 1√
2πν

( ez

2ν

)ν
(104)

it is immediate to recognize that
∞∑

m,n=1

∣∣∣Ẑmn

∣∣∣2 < +∞ (105)

i.e., the operator
[
Ẑmn

]
is compact in the space �2 of the square-summable sequences. Since it is also

[Vm] ∈ �2, it follows that (100) is a second-kind Fredholm equation in �2 of the kind

X + AX = B (106)

Thanks to the Fredholm theory [23], this means that the exact solution

X = (I + A)−1B (107)

certainly exists, where I is the identity operator, and that the solution of the discretized problem
converges to such an exact solution in the point-wise sense. In practice, the solution of the system
truncated to a finite number N of equations converges to the exact solution. This means that if X(N)

is the solution of the truncated system

X(N) + A(N)X(N) = B(N) (108)

then the relative error, by the norm in �2, is limited as

e(N) =
||X − X(N)||

||X|| ≤ ||(I + A)−1||||A − A(N)|| (109)

and vanishes as N → ∞.

6. CONCLUSION

The electromagnetic field of a vertical magnetic dipole shielded by an infinitesimally thin perfectly
conducting disk has been evaluated in an exact form.

The problem has been formulated in the Hankel transform domain obtaining a set of dual integral
equations considering the surface current density induced over the disk as unknown. The solution has
been achieved by means of a Galerkin’s Method-of-Moments approach choosing, as basis functions,
the complete set of orthogonal eigenfunctions of the static part of the integral operator as expansion
basis. Such functions also reconstruct the physical behavior of the surface current density at the center
and the edges of the disk, thus allowing for a rapidly convergent representation of the scattered field.
It has been shown that the proposed solution scheme fits into the more general method of analytical
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regularization. Finally, the static-limit solution has been extracted in a closed form which has been
shown to be accurate up to sufficiently high frequencies.

Possible generalizations of the proposed approach could address the treatment of thin disks with
a finite conductivity or/and sources displaced from the symmetry axis of the disk. In both cases the
problem would remain planar (whereas a non-negligible thickness of the disk would radically change
the mathematical nature of the problem); in the former case, a surface transition impedance boundary
condition should be enforced; in the latter case, a representation of the displaced source in terms of
continuous, azimuthally phased ring sources should be employed, and the scattered field would be hybrid
(TMz/TEz). Consideration of such generalized problems will be the subject of future work.
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