Vol. 2
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-19
Design of Single PIN Shorted Three-Dielectric-Layered Substrates Rectangular Patch Microstrip Antenna for Communication Systems
By
Progress In Electromagnetics Research Letters, Vol. 2, 157-165, 2008
Abstract
In this paper, we have simulated a single-pin-shorted microstrip line fed three-dielectric-layer (with different permittivity and thickness) rectangular patch microstrip antenna for all those communication systems whose limited antenna size is premium. Low permittivity hard foam has been used as one substrate to achieve wide bandwidth. The simulation of this proposed antenna has been performed by using CST Microwave Studio, which is a commercially available electromagnetic simulator based on the finite difference time domain technique.
Citation
Aditi Sharma, and Ghanshyam Singh, "Design of Single PIN Shorted Three-Dielectric-Layered Substrates Rectangular Patch Microstrip Antenna for Communication Systems," Progress In Electromagnetics Research Letters, Vol. 2, 157-165, 2008.
doi:10.2528/PIERL08010703
References

1. Ang, B. K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communication," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

2. Aissat , H., L. Cirio, M. Grzeskowiak, J.-M. Laheurte, and O. Picen, "Reconfigurable circularly polarized antenna for shortrange communication systems," IEEE Trans. Microwave Theory Techniq., Vol. 54, 2856-2863, 2006.
doi:10.1109/TMTT.2006.875454

3. Hirvonen, M., P. Pursula, K. Jaakkola, and K. Laukkanen, "Planar inverted-F antenna for radio frequency identification," Electron Lett., Vol. 40, 848-850, 2004.
doi:10.1049/el:20045156

4. Geyi, V., Q. Rao, and D. Wang, "Handset antenna design: Practice and theory," Progress In Electromagnetics Research, Vol. 80, 123-160, 2008.
doi:10.2528/PIER07111302

5. Abbaspour, M. and H. R. hassani, "Wide band star shaped microstrip patch antennas," Progress In Electromagnetics Research Letters, Vol. 1, 61-68, 2008.
doi:10.2528/PIERL07111505

6. Abdelaziz, A. A., "Bandwidth enhancement of microstrip antenna," Progress In Electromagnetics Research, Vol. 63, 311-317, 2006.
doi:10.2528/PIER06053001

7. Nishiyama, E. and M. Aikawa, "FDTD analysis of stacked microstrip antenna with high gain," Progress In Electromagnetics Research, Vol. 33, 29-43, 2001.
doi:10.2528/PIER00091501

8. Xia, L., C.-F. Wang, L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Resonant behaviors of microstrip antenna in multilayered media: An efficient full wave analysis," Progress In Electromagnetics Research, Vol. 31, 55-67, 2001.
doi:10.2528/PIER00052202

9. Harokopus, W. P. and P. B. Katehi, "Characterization of microstrip discontinuities on multilayer dielectric substrates including radiation losses," IEEE Trans. Microwave Theory Tech., Vol. 37, 2058-2058, Dec. 1989.
doi:10.1109/22.44122

10. Tsai, M. J., F. D. Flaviis, O. Fordham, and N. G. Alexopoulos, "Modeling planar arbitrarily shaped microstrip elements in multilayered media," IEEE Trans. Microwave Theory Tech., Vol. 45, 330-337, Mar. 1997.
doi:10.1109/22.563330

11. Schwab, W. and W. Menzel, "On the design of planar microwave components using multilayer structures," IEEE Trans. Microwave Theory Tech., Vol. 40, 67-72, Jan. 1992.
doi:10.1109/22.108324

12. Yeung, E. K. L., J. C. Beal, and Y. M. M. Antar, "Multilayer microstrip structure analysis with matched load simulation," IEEE Trans. Microwave Theory Tech., Vol. 43, 143-149, Jan. 1995.
doi:10.1109/22.362997

13. Eldek, A. A., "Numerical analysis of a small ultra wideband microstrip FED tap monopole antenna ," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305

14. Lo, T. K., C.-O. Ho, Y. Hwang, E. K. W. Lam, and B. Lee, "Miniature aperture-coupled microstrip antenna of very high permittivity," Electron. Lett., Vol. 33, 9-10, Jan. 1997.
doi:10.1049/el:19970053

15. Zhang, G.-M., J.-S. Hong, and B. Z. Wang, "Two novel bandnotched UWB slot antennas fed by microstrip line," Progress In Electromagnetic Research, Vol. 78, 209-318, 2008.
doi:10.2528/PIER07091201

16. Yang, S. L. S., K. F. Lee, and A. A. Kishk, "Design and study of wideband single feed circularly polarized microstrip antenna," Progress In Electromagnetic Research, Vol. 80, 45-61, 2008.
doi:10.2528/PIER07110604

17. Waterhouse, R. B., S. D. Targonski, and D. M. Kokoto, "Design and performance of small printed antennas," IEEE Trans. Ant. Prop., Vol. 46, 1629-1633, 1998.
doi:10.1109/8.736612

18. Waterhouse, R. B., "Small microstrip patch antenna," Electronics Letters, Vol. 31, 604-605, 1995.
doi:10.1049/el:19950426

19. Kan, H. K. and R. B. Waterhouse, "Size reduction technique for shorted patches," Electronics Letters, Vol. 35, 948-949, 1999.
doi:10.1049/el:19990703

20. Porath, R., "Theory of miniaturized shorting post microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 1, 41-47, Jan. 2000.
doi:10.1109/8.827384