Vol. 7
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-20
Simulation of Spread Spectrum Radar Using Rake at the Receiver End
By
Progress In Electromagnetics Research Letters, Vol. 7, 35-45, 2009
Abstract
Intelligent Transport Systems (ITS) are becoming a reality, driven by navigation safety requirements and by the investments of car manufacturers and Public Transport Authorities all around the world. ITS make it possible to imagine a future in which cars will be able to foresee and avoid collisions, navigate the quickest route to their destination, making use of up-to-the minute traffic reports, identify the nearest available parking slot and minimize their carbon emissions. Also demand for voice, data and multimedia services, while moving in car increase the importance of broadband wireless systems [1]. Efforts are being imparted towards the convergence of mobile communications, computing and remote sensing. Spread spectrum based digital RADAR can be utilized as a remote sensing device in ITS. This motivates us in development of DSSS (Direct Sequence Spread Spectrum) based digital RADAR at our institute. It is quite capable of detecting target in the open field. The experiment was carried out for different standard target like flat plates, spheres etc. The operational digital RADAR is capable of rejecting interference, but fails in a strong multipath scenario. Again RAKE processing is established in communication. Our approach is implementing RAKE processing at the RADAR receiver to exploit multipath.
Citation
Debadatta Kandar, Chandan Kumar Sarkar, and Rabindra Nath Bera, "Simulation of Spread Spectrum Radar Using Rake at the Receiver End," Progress In Electromagnetics Research Letters, Vol. 7, 35-45, 2009.
doi:10.2528/PIERL09011608
References

1. Huang, X., "Smart antennas for intelligent transportation systems," 6th International Conference on ITS Telecommunications Proceedings, 2006.

2. Belohoubek, E. F., "Radar control for automotive collision mitigation and headway spacing," IEEE Trans. Veh. Technol., Vol. 31, 89-99, May 1982.
doi:10.1109/T-VT.1982.23918

3. Brus, E., "Vehicular radar: The ultimate aid for defensive driving," Microwaves & RF, 53-58, Sep. 1987.

4. Bera, R., J. Bera, S. Sil, D. Kandar, and D. Dey, "Use of spread spectrum based cellular phone technology to ‘digital radar’," CODEC 2004, Calcutta University, Kolkata, Jan. 1–3, 2004.

5. Kandar, D. and R. Bera, "Development of an imaging radar instrumentation system using DS-UWB wireless technology," Proceedings of XXVIIIth General Assembly of International Union of Radio Science (URSI).

6. Skolnik, M., Introduction to Radar System, 3 Ed., McGraw-Hill, 2002.

7. Foschini, G. J., "Layered space-time architecture for wireless communication in a fading environment whwn using multielement antennas," Bell Laboratories Technical Journal, Vol. 1, No. 2, 41-59, 1996.
doi:10.1002/bltj.2015

8. Hanzo, L., L.-L. Yong, E.-L. Kuan, and K. Yen, Single and Multi-Carrier DS-CDMA Multy-User Detection, Space-Time Spreading Synchronisation and Standards, 1 Ed., John Wiley & Sons, 2003.

9. Wolniansky, P. W., G. J. Foschini, G. D. Golden, and R. A. Valenzuela, "V-blast: An architecture for realizing very high data rates over the rich-scattering wireless channel," Proc. of Issse, 295-300, Pisa, Italy, Sep.–Oct. 1998.

10. Skolnik, M., Introduction to Radar System, 3 Ed., McGraw-Hill, 2002.

11. Knott, E. F., Radar Cross Section, 2 Ed., Scitech, Raleigh, NC, 2004.

12. Sinha, N. B., D. Kandar, and R. Bera, "Measurement of target parameters using the dsss radar," Progress In Electromagnetics Research M, Vol. 1, 185-195, 2008.
doi:10.2528/PIERM08013103

13. "Special issue on spread-spectrum communication," IEEE Trans. Commun.,, Vol. 30, May 1982.

14. Simon, M. K., et al. "Spread-spectrum communications," Comp. Sci., Vol. 1–3, 1985.

15. Scholrz, R. A., "Spread-Spectrum Concept," IEEE Trans. Commun., Vol. 25, Aug. 1977.
doi:10.1109/TCOM.1977.1093800

16. Torrieri, D. J., Principles of Secure Communication Systems, Artech House, Norwood, MA, 1992.

17. Cooper, G. R. and C. D. McGillem, Modern Communication and Spread-Spectrum, McGraw-Hill, New York, 1986.

18. Glisic, S. G. and P. A. Leppanen (eds.), Code Division Multiple Access Communications, Kluwer Academic, Norwell, MA, 1995.

19. Viterbi, A. J., CDMA Principles of Spread-Spectrum Communications, Addison-Wesley, MA, 1995.

20. Dixon, R. C., Spread-Spectrum Systems, John Wiley & Sons, New York, 1984.

21. Heikkila, T., "Rake receiver,", S-72.333 Postgraduate Course in Radio Communications, Dec. 7th, 2004.

22. Burns, P., Software Defined Radio for 3G, Mobile Communications Series, Artech House.