Vol. 9
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-08
Design of a Fractal Dual-Polarized Aperture Coupled Microstrip Antenna
By
Progress In Electromagnetics Research Letters, Vol. 9, 175-181, 2009
Abstract
In this paper, a fractal dual-polarized aperture-coupled microstrip antenna is presented. The proposed antenna adopts 1st Minkowski fractal patch and is fed by the aperture-coupled structure with H-shaped and H-shaped loaded capacitance. The size of Minkowski fractal patch is reduced by 20% compared with a square patch. Results show that the T/R isolation is better than 35 dB, improved by 2 dB compared with the double H-shaped slots. The gain is more than 8 dB, and the front-back ratio is greater than 20 dB in the operating frequency range. Both simulated and experimental results are in good agreement.
Citation
Hai Rong Cheng, Xiao-Qun Chen, Lei Chen, and Xiao-Wei Shi, "Design of a Fractal Dual-Polarized Aperture Coupled Microstrip Antenna," Progress In Electromagnetics Research Letters, Vol. 9, 175-181, 2009.
doi:10.2528/PIERL09060102
References

1. Haupt, R. L., "The development of smart antennas," IEEE AP-S Int. Symp., Vol. 4, No. 8, 48-51, 2001.

2. Bellofiore, S., C. A. Balanis, J. Foutz, and A. S. Spanias, "Smart-antenna systems for mobile communication networks. Part 1: Overview and antenna design," IEEE Antennas and Propagation Magazine, Vol. 44, No. 3, 145-154, 2002.
doi:10.1109/MAP.2002.1039395

3. Miyamoto, R. Y. and T. Itoh, "Retrodirective arrays for wireless communications," IEEE Micro., Vol. 3, No. 1, 71-79, 2002.
doi:10.1109/6668.990692

4. Goshi, D. S., "A secure high-speed retrodirective communication link," IEEE Micro., Vol. 53, No. 11, 3548-3549, 2005.
doi:10.1109/TMTT.2005.857107

5. Starke, P. L. and G. G. Cook, "Optimised design of multi-band cellular base station antenna array for GSM and UMTS deployment," IET Microw. Antennas & Propag., Vol. 3, No. 2, 333-347, 2009.
doi:10.1049/iet-map:20080016

6. Vallozzi, L., H. Rogier, and C. Hertleer, "Dual polarized textile patch antenna for integration into protective garments," IEEE AWPL, Vol. 7, 440-443, 2008.

7. Gao, S. C. and S. S. Zhong, "Dual-polarized microstrip antenna array with high isolation fed by coplanar network," Microwave and Optical Technology Letters, Vol. 19, No. 3, 213-214, 1998.
doi:10.1002/(SICI)1098-2760(19981020)19:3<214::AID-MOP12>3.0.CO;2-1

8. Row, J.-S. and J.-F. Wu, "Aperture-coupled microstrip antennas with switchable polarization," IEEE Trans. Antennas, Vol. 54, No. 9, 2686-2687, 2006.
doi:10.1109/TAP.2006.880785

9. Gao, S., L. W. Li, M. S. Leong, and T. S. Yeo, "A broad-band dual-polarized microstrip patch antenna with aperture coupling," IEEE Trans. Antennas, Vol. 51, No. 4, 898-899, 2003.
doi:10.1109/TAP.2003.811080

10. Raman, S. and G. M. Rebeiz, "Single- and dual-polarized millimeter-wave slot-ring antennas," IEEE Trans. Antennas, Vol. 44, No. 11, 1438-1444, 1996.
doi:10.1109/8.542067

11. Won, K.-H., H. C. Tung, and T. W. Chiou, "Broadband dual polarized aperture coupled patch antennas with modied H-shaped coupling slots," IEEE Trans. on AP, Vol. 50, No. 2, 188-191, 2002.

12. Ghorbani, K. and R. B. Waterhouse, "Dual polarized wide-band aperture stacked patch antennas," IEEE Trans. Antennas, Vol. 52, No. 8, 2171-2174, 2004.
doi:10.1109/TAP.2004.832484

13. Baliarda, C. P., J. Romeu, and A. Cardama, "A small fractal antenna," IEEE Trans. Antennas, Vol. 48, No. 11, 1773-1781, 2000.
doi:10.1109/8.900236