Vol. 10
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-08-22
Left-Handed Materials Based on Crystal Lattice Vibration
By
Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009
Abstract
An all-dielectric composite route is proposed for the construction of a left-handed material at THz frequency. It is shown that the interaction between the crystal lattice vibration of the polaritonic dielectric and the electromagnetic wave could induce a negative permittivity. By combining the electric inclusion of polaritonic dielectric with the magnetic inclusion based on Mie resonance, the dielectric composite exhibits simultaneously negative permittivity and negative permeability, hence a negative refractive index. Additionally, the simulation results of the electromagnetic coupling between the electric and magnetic inclusions indicate that the behavior of the negative refractive index is closely related to the distance between the two inclusions.
Citation
Rui Wang, Ji Zhou, Changqing Sun, Lei Kang, Qian Zhao, and Jingbo Sun, "Left-Handed Materials Based on Crystal Lattice Vibration," Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009.
doi:10.2528/PIERL09070807
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspeki, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Houck, A. A., J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett., Vol. 90, 137401, 2003.
doi:10.1103/PhysRevLett.90.137401

5. Shalaev, V. M., W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, 3356-3358, 2005.
doi:10.1364/OL.30.003356

5. Shalaev, V. M., W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, 3356-3358, 2005.
doi:10.1364/OL.30.003356

6. Padilla, W. J., A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett., Vol. 96, 107401, 2006.
doi:10.1103/PhysRevLett.96.107401

7. Huang, K. C., M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett., Vol. 85, 543, 2004.
doi:10.1063/1.1775291

8. O'Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys.: Condens. Matter, Vol. 14, 4035-4044, 2002.
doi:10.1088/0953-8984/14/15/317

9. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies," Phys. Rev. B, Vol. 72, 193103, 2005.
doi:10.1103/PhysRevB.72.193103

10. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Phys. Rev. Lett., Vol. 99, 107401, 2007.
doi:10.1103/PhysRevLett.99.107401

11. Peng, L., L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2007.
doi:10.1103/PhysRevLett.98.157403

12. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

13. Holloway, C. L., E. F. Kuester, J. B. Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propag., Vol. 51, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563

14. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Tech. Phys. Lett., Vol. 32, 429-433, 2006.
doi:10.1134/S106378500605018X

15. Dewar, G., "A thin wire array and magnetic host structure with n < 0," J. Appl. Phys., Vol. 97, 10Q101, 2005.
doi:10.1063/1.1846032

16. Chui, S. T. and L. B. Hu, "Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites," Phys. Rev. B, Vol. 65, 144407, 2002.
doi:10.1103/PhysRevB.65.144407

17. Born, M. and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.

18. Perry, C. H., B. N. Khanna, and G. Rupprecht, "Infrared studies of perovskite titanates," Phys. Rev., Vol. 135, A408-A412, 1964.
doi:10.1103/PhysRev.135.A408

19. Zelezny, V., E. Cockayne, J. Petzelt, M. F. Limonov, D. E. Usvyat, V. V. Lemanov, and A. A. Volkov, "Temperature dependence of infrared-active phonons in CaTiO.3: A combined spectroscopic and first-principles study," Phys. Rev. B, Vol. 66, 224303, 2002.
doi:10.1103/PhysRevB.66.224303

20. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley and Sons, New York, 1983.

21. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

22. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404

23. Loh, E., "Optical phonons in BeO crystals," Phys. Rev., Vol. 166, 673-678, 1968.
doi:10.1103/PhysRev.166.673

24. Zhao, Q., L. Kang, B. Li, and J. Zhou, "Tunable negative refraction in nematic liquid crystals," Appl. Phys. Lett., Vol. 89, 221918, 2006.
doi:10.1063/1.2399345