Vol. 11
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-08-31
A Wideband and Dual Frequency Three-Dimensional Transition-Fed Circular Patch Antenna for Indoor Base Station Application
By
Progress In Electromagnetics Research Letters, Vol. 11, 47-54, 2009
Abstract
The design and performance of a stacked patch antenna for wideband and dual-frequency operation are presented in this paper. The proposed antenna consists of a three dimensional (3D) circular transition-fed patch that is excited by a coaxial probe. By introducing a regular patch and a ring patch above the 3D circular transition-fed patch, good input impedance matching has been achieved over two frequency bands. The lower band possesses an impedance bandwidth (VSWR < 2) of 22.8% (0.775 to 0.975 GHz) and a peak gain of 5.2 dBi, while the upper band has an impedance bandwidth (VSWR < 2) of 65.8% (1.425 to 2.825 GHz) and a peak gain of 7.4 dBi. Other than the wideband and dual-band operation features, this antenna also has a beam tilted downward with a broadside beam pattern on the horizontal plane. Therefore, this antenna is very suitable for the indoor base station that is required to service several wireless communication systems, included CDMA800, GSM900, 3G, PCS, UMTS, BLUETOOTH and WLAN, by a single antenna.
Citation
You-Huo Huang, Qi-Zhong Liu, and Shi-Gang Zhou, "A Wideband and Dual Frequency Three-Dimensional Transition-Fed Circular Patch Antenna for Indoor Base Station Application," Progress In Electromagnetics Research Letters, Vol. 11, 47-54, 2009.
doi:10.2528/PIERL09080207
References

1. Guo, Y.-X., K.-M. Luk, K.-F. Lee, and R. Chair, "A quarter-wave U-shaped patch antenna with two unequal arms for wideband and dual-frequency operation," IEEE Antennas Propagat. Mag., Vol. 50, 1082-1087, Aug. 2002.
doi:10.1109/TAP.2002.801285

2. Lee, R. Q., K. F. Lee, and J. Bobinchak, "Characteristics of a two-layer electro-magnetically coupled rectangular patch antenna," Electron. Lett., Vol. 23, No. 20, 1070-1072, Sep. 1987.
doi:10.1109/TAP.1986.1143890

3. Chang, E., S. A. Long, and W. F. Richards, "Experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 34, 767-772, Jun. 1986.

4. Guo, Y. X., C. L. Mak, K. M. Luk, and K. F. Lee, "Analysis and design of L-probe proximity fed patch antennas," IEEE Trans. Antennas Propagat., Vol. 49, 145-149, Feb. 2001.
doi:10.1109/8.865229

5. Tong, K. F., K. M. Luk, K. F. Lee, and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," IEEE Trans. Antennas Propagat., Vol. 48, 954-960, Jun. 2000.

6. Dahele, J. S., K. F. Lee, and D. P. Wong, "Dual frequency stacked annular-ring microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 35, 1281-1285, Nov. 2000.
doi:10.1109/TAP.1984.1143459

7. Wang, B. F. and Y. T. Lo, "Microstrip antenna for dual-frequency operation," IEEE Trans. Antennas Propagat., Vol. 32, 938-943, Sep. 1984.
doi:10.1109/74.646798

8. Maci, S. and G. B. Gentili, "Dual-frequency patch antennas," IEEE Antennas Propagat. Mag., Vol. 39, 13-20, Dec. 1997.
doi:10.1002/1098-2760(20000720)26:2<73::AID-MOP2>3.0.CO;2-4

9. Guo, Y. X., K. M. Luk, and K. F. Lee, "A dual-band patch antenna with two U-shaped slots," Microwave Opt. Technol. Lett., Vol. 26, No. 2, 73-75, Jul. 2000.
doi:10.2528/PIER04103001

10. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Dual-wideband square slot antenna with a U-shaped printed tuning stub for personal wireless communication systems," Progress In Electromagnetics Research, Vol. 53, 319-333, 2005.
doi:10.2528/PIER08111902

11. Lee, Y.-C. and J.-S. Sun, "Compact prined slot antennas for wireless dulal-band multi-band operations," Progress In Electromagnetics Research, Vol. 88, 289-305, 2008.
doi:10.2528/PIER04021301

12. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Characteristics of bow-tie slot antenna with tapered tuning stubs for wideband opreration," Progress In Electromagnetics Research, Vol. 49, 53-69, 2004.
doi:10.2528/PIER04021301

12. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Characteristics of bow-tie slot antenna with tapered tuning stubs for wideband opreration," Progress In Electromagnetics Research, Vol. 49, 53-69, 2004.
doi:10.2528/PIER07041801

13. Wang, F. J. and J. S. Zhang, "Wide band cavity-backed patch antenna for pcs/IMI2000/2.4 GHz WLAN FOR PCS/IMI2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER03100901

14. Wang, Y. J. and C. K. Lee, "Compact and broadband microstip patch antenna for the 3G IMT-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.

15. Ogawa, K. and T. Uwano, "A variable tilted fan beam antenna for indoor base stations," Antennas and Propagation Society International Symposium, Vol. 1, 332-335, Jun. 1994.