Vol. 21
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-02-16
A High-Ratio Bandwidth Square-Wave-Like Bandpass Filter by Two-Handed Metamaterials and Its Application in 60 GHz Wireless Communication
By
Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011
Abstract
By enabling both cavity modes and plasmonic resonance together in the designed two-handed metamaterial, we demonstrate a square-wave-like (SWL) bandpass filter with high-ratio bandwidth (HRB). Our results show that this metamaterial-based bandpass filter possesses high-ratio bandwidth of 30 GHz centered at 92 GHz, excellent transmittance beyond 87.5 %, sharp transition within 1.0 GHz from -3 dB to -20 dB as upper and lower band edge transitions, and dual-band behavior. Such an HRBSWL bandpass filter can be scalable and readily applicable for the commercialized unlicensed 60 GHz spectra with a bandwidth exceeding 7 GHz, solving the challenge of conventional passive bandpass filters to allow wide bandwidths and great quality factors simultaneously.
Citation
Tsung-Yu Huang, and Ta-Jen Yen, "A High-Ratio Bandwidth Square-Wave-Like Bandpass Filter by Two-Handed Metamaterials and Its Application in 60 GHz Wireless Communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011.
doi:10.2528/PIERL10111706
References

1. "http://www.palowireless.com/uwb/tutorials.asp,".
doi:10.2528/PIER08030101

2. "http://spectrum.ieee.org/consumer-electronics/standards/gadgets-gab-at-60-ghz,".
doi:10.1049/iet-map.2008.0222

3. http://en.wikipedia.org/wiki/Ultra-wideband.
doi:10.1109/LMWC.2008.2008558

4. "http://www.wirelesshd.org/membership/,".
doi:10.2528/PIER08102303

5. Wang, X.-H., B.-Z. Wang, and K. J. Chen, "Compact broadband dual-band bandpass filters using slotted ground structures," Progress In Electromagnetics Research, Vol. 82, 151-166, 2008.
doi:10.1109/LMWC.2008.2008554

6. Yang, B., E. Skafidas, and R. J. Evans, "Design of 60 GHz millimetre-wave bandpass filter on bulk CMOS," IET Microwaves Antennas & Propagation, Vol. 3, 943-949, 2009.
doi:10.1109/LMWC.2008.2008554

7. Yao, B. Y., Y. G. Zhou, Q. S. Cao, and Y. C. Chen, "Compact UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wirel. Compon. Lett., Vol. 19, 27-29, 2009.
doi:10.1103/PhysRevB.78.115110

8. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Bin Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
doi:10.1002/mop.24196

9. Ma, K. X., K. C. B. Liang, R. M. Jayasuriya, and K. S. Yeo, "A wideband and high rejection multimode bandpass filter using stub perturbation," IEEE Microw. Wirel. Compon. Lett., Vol. 19, 24-26, 2009.
doi:10.1002/mop.24196

10. Chiang, Y.-J. and T.-J. Yen, "A highly symmetric two-handed metamaterial spontaneously matching the wave impedance," Opt. Express, Vol. 16, 12764-12770, 2008.
doi:10.1126/science.1094025

11. Fu, L., H. Schweizer, H. Guo, N. Liu, and H. Giessen, "Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B, Vol. 78, 9, 2008.
doi:10.1126/science.1094025

12. Cimen., S., G. Cakir, and L. Sevgi, "Metamaterial slabs and realization of all-type filter characteristics: Numerical and analytical investigations," Microwave and Optical Technology Letters, Vol. 51, 894-899, 2009.

13. Fu, L., H. Schweizer, H. Guo, N. Liu, and H. Giessen, Analysis of Metamaterials Using Transmission Line Models, 425-429, Springer, 2007.
doi:10.1109/TAP.2003.813622

14. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1103/PhysRevLett.93.107402

15. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 11, 2005.
doi:10.1103/PhysRevLett.93.107402

16. Chen, X. D., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 7, 2004.

17. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, 1516-1529, 2003.

18. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett., Vol. 93, 107402, 2004.

19., http://www.itexaminer.com/intel-rd-says-60ghz-wireless-is-way- to-go-.aspx.