Vol. 20

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-02-03

A Novel Double-Petal Loop Element for Broadband Reflectarray

By Li-Shi Ren, Yong-Chang Jiao, Fan Li, Jin-Juan Zhao, and Gang Zhao
Progress In Electromagnetics Research Letters, Vol. 20, 157-163, 2011
doi:10.2528/PIERL10121001

Abstract

In this paper, a reflectarray antenna composed of a combination of double-petal loops of variable size is presented. To evaluate the performance of the designed element, a parametric study is carried out using Ansoft HFSS. For the optimal parametrics, the proposed structure shows an almost linear behavior, while the phase range is in excess of 500°. Then, a prime-focus 77-element reflectarray with this type of element has been designed and implemented. The measured results show that the obtained 1-dBi gain bandwidth of the reflectarray with double-petal loop elements can reach as large as 25% and the highest gain is about 19.3 dBi. Compared with the existing single layer elements (cross and rectangle loop, double rings, etc), microstrip reflectarray with this double-petal loop element can obtain a larger bandwidth.

Citation


Li-Shi Ren, Yong-Chang Jiao, Fan Li, Jin-Juan Zhao, and Gang Zhao, "A Novel Double-Petal Loop Element for Broadband Reflectarray," Progress In Electromagnetics Research Letters, Vol. 20, 157-163, 2011.
doi:10.2528/PIERL10121001
http://www.jpier.org/PIERL/pier.php?paper=10121001

References


    1. Zubir, F., M. K. A. Rahim, O. B. Ayop, and H. A. Majid, "Design and analysis of microstrip reflectarray antenna with minkowski shape radiation element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
    doi:10.2528/PIERB10071208

    2. Li, H. , B. Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
    doi:10.1163/156939307783239528

    3. Abbosh, A. M., "Design of dual-band microstrip reflectarray using single layer multiresonance double cross elements," Progress In Electromagnetics Research Letters, Vol. 13, 67-74, 2010.
    doi:10.2528/PIERL09111612

    4. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
    doi:10.2528/PIER09112506

    5. Huang, J. and A. Feria, "A one-meter X-band inflatable reflectarray antenna," Microwave Opt. Technol. Lett., Vol. 20, 97-99, Jan. 1999.
    doi:10.1002/(SICI)1098-2760(19990120)20:2<97::AID-MOP4>3.0.CO;2-K

    6. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Trans. Antennas Propaga., Vol. 51, No. 7, 1662-1664, 2003.
    doi:10.1109/TAP.2003.813611

    7. Hamed, H., M. Kamyab, and A. Mirkamali, "Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines," IEEE Antennas Wireless Propag. Lett.,, Vol. 9, 156-158, 2010.

    8. Chaharmir, M. R., J. Shaker, and H. Legay, "Broad design of a single layer large reflectarray using muli cross loop elements," IEEE Trans. Antennas Propaga., Vol. 57, No. 10, 3363-3366, 2009.
    doi:10.1109/TAP.2009.2029600

    9. Li, Q.-Y., Y.-C. Jiao, and G. Zhao, "A novel microstrip rectangular-patch/ring-combination reflectarray element and its application," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1119-1122, 2009.
    doi:10.1109/LAWP.2009.2033620