Vol. 21
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-15
An Effective Analysis Method for EBG Reducing Patch Antenna Coupling
By
Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011
Abstract
This paper presents an effective analysis method for EBG reducing patch antenna coupling. A couple of coaxial probes are used to analyze the mutual coupling reduction range of patch antenna arrays loaded with EBG in this method. Conventional FDTD/PBC algorithm for EBG structures is appropriate only in infinite ground plane and substrate. The gained frequency band-gap by using the algorithm can not be directly used in finite ground plane because of the edge effects. While the proposed coaxial probe method is valid not only in infinite ground plane and substrate, but also for finite ground plane. The method is more suitable for real environments. In order to validate the described method, a two-element microstrip patch antenna array is fabricated and measured. The experimental results are in good agreement with the theoretical data obtained by using the proposed method.
Citation
Huan-Huan Xie, Yong-Chang Jiao, Li-Na Chen, and Fu-Shun Zhang, "An Effective Analysis Method for EBG Reducing Patch Antenna Coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.
doi:10.2528/PIERL11022313
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

2. Zhang, G. H., Y. Q. Fu, C. Zhu, D. B. Yan, and N. C. Yuan, "A circular waveguide antenna using high-impedance ground plane," IEEE Antennas and Wireless Propag. Lett., Vol. 2, 86-88, 2003.
doi:10.1109/LAWP.2003.814774

3. Li, Z. and Y. Rahmat-Samii, "PBG, PMC and PEC surface for antenna applications: A comparative study," IEEE AP-S Dig., 674-677, Jul. 2000.

4. Yang, F. and Y. Rahmat-Samii, "A low-profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface," Microwave Optical Tech. Lett., Vol. 31, No. 4, 264-267, Nov. 2001.
doi:10.1002/mop.10006

5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas and Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

6. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

7. Fu, Y. and N. Yuan, "Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials," IEEE Antennas and Wireless Propag. Lett., Vol. 3, 63-65, 2004.

8. Zhang, L., J. A. Castaneda, and N. G. Alexopoulos, "Scan blindness free phased array design using PBG materials," IEEE Trans. Antennas and Propag., Vol. 52, No. 8, 2000-2007.
doi:10.1109/TAP.2004.832516

9. Sievenpiper, D. F., "High impedance electromagnetic surfaces,", Ph.D. Dissertation, Electrical Engineering Department, University of California, Los Angeles, 1999.

10. Rahman, M. and M. A. Stuchly, "Transmission line-periodic circuit representation of planar microwave photonic bandgap structures," Microwave Optical Tech. Lett., Vol. 30, No. 1, 15-19, 2010.
doi:10.1002/mop.1207

11. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302