Vol. 24
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-06-03
Eigenvalue Analysis of Spherical Resonant Cavity Using Radial Basis Functions
By
Progress In Electromagnetics Research Letters, Vol. 24, 69-76, 2011
Abstract
This paper applies a meshless method based on radial basis function (RBF) collocation to solve three-dimensional scalar Helmholtz equation in rectangular coordinates and analyze the eigenvalues of spherical resonant cavity. The boundary conditions of spherical cavity are deduced. The RBF interpolation method and the collocation procedure are applied to the Helmholtz and boundary condition equations, and their discretization matrix formulations are obtained. The eigenvalues of spherical resonant cavity with natural conformal node distribution are computed by the proposed method. Their results are agreement with the analytic solution.
Citation
Sheng-Jian Lai, Bing-Zhong Wang, and Yong Duan, "Eigenvalue Analysis of Spherical Resonant Cavity Using Radial Basis Functions," Progress In Electromagnetics Research Letters, Vol. 24, 69-76, 2011.
doi:10.2528/PIERL11040904
References

1. Marechal, Y., "Some meshless methods for electromagnetic field computations," IEEE Trans. Magn., Vol. 34, No. 5, 3351-3354, Sep. 1998.
doi:10.1109/20.717788

2. Park, G. H., K. Krohne, P. Bai, and E. P. Li, Applications of Meshfree Methods in Electromagnetic, IET. Conf. Publ., 1-2, Apr. 2008.

3. Lai, S.-J., B.-Z. Wang, Y. Duan, and , "Meshless radial basis function method for transient electromagnetic computations," IEEE Trans. Magn., Vol. 44, No. 10, 2288-2295, 2008.
doi:10.1109/TMAG.2008.2001796

4. Liu, X.-F., B.-Z. Wang, and S.-J. Lai, "Element-free Galerkin method for transient electromagnetic field simulation," Microwave and Optical Technology Letters, Vol. 50, No. 1, 134-138, Jan. 2008.
doi:10.1002/mop.23017

5. Kansa, E. J., "Multiqudrics --- A scattered data approximation scheme with applications to computational fluid-dynamics --- I. Surface approximations and partial derivatives," Computer Math. Appli., Vol. 19, 127-145, 1990.
doi:10.1016/0898-1221(90)90270-T

6. Jiang, P. L., S. Q. Li, and C. H. Chan, "Analysis of elliptical waveguides by a meshless collocation method with the Wendland radial basis funcitons," Microwave and Optical Technology Letters, Vol. 32, No. 2, 162-165, Jan. 2002.
doi:10.1002/mop.10119

7. Zhao, G., B. L. Ooi, Y. J. Fan, Y. Q. Zhang, I. Ang, and Y. Gao, "Application of conformal meshless RBF coupled with coordinate transformation for arbitrary waveguide analysis," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 3-14, 2007.
doi:10.1163/156939307779391731

8. Lai, S.-J., B.-Z. Wang, and Y. Duan, "Solving Helmholtz equation by meshless radial basis functions method," Progress In Electromagnetics Research B, Vol. 24, 351-367, 2010.
doi:10.2528/PIERB10062303

9. Yu, J. H. and H. Q. Zhang, "Solving waveguide eigenvalue problem by using radial basis function method," World Automation Congress, WAC 2008, 1-5, 2008.

10. Kaufmann, T., C. Fumeaus, C. Engstrom, and R. Vahldieck, "Meshless eigenvalue analysis for resonant structures based on the radial point interpolation method," APMC 2009, 818-821, 2009.

11. Zhang, K. Q. and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics, 2nd Ed., Chapter 5, Springer Press, New York, 2008.