Vol. 26

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Fano Resonances in a Bilayer Structure Composed of Two Kinds of Dispersive Metamaterials

By Yanhong Liu, Haitao Jiang, Chunhua Xue, Wei Tan, Hong Chen, and Yun Long Shi
Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011


We theoretically find that a bi-layer structure composed of two kinds of dispersive metamaterials can possess an asymmetric reflection spectrum due to Fano-type interference between a discrete reflection resonance and a broadband strong reflection. The discrete reflection resonance appears at the frequency around which the dispersive permeability is near to zero at oblique incidence. Based on analytical and numerical analysis, the asymmetric factor in the Fano-type reflection is found to be linked with the angle of incidence.


Yanhong Liu, Haitao Jiang, Chunhua Xue, Wei Tan, Hong Chen, and Yun Long Shi, "Fano Resonances in a Bilayer Structure Composed of Two Kinds of Dispersive Metamaterials," Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011.


    1. Fano , U., "Effects of configuration interaction on intensities and phase shifts," Phys. Rev., Vol. 124, 1866-1878, 1961.

    2. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.

    3. Kobayashi , K., H. Aikawa, S. Katsumoto, and Y. Iye, "Mesoscopic Fano effect in a quantum dot embedded in an Aharonov-Bohm ring," Phys. Rev. B, Vol. 68, 235304, 2003.

    4. Vassilios , V. and M. P. Hariton, "Fano resonance and persistent current in mesoscopic open rings: Influence of coupling and Aharonov-Bohm flux," Phys. Rev. B, Vol. 74, 235323, 2006.

    5. Xiong , Y. J. and X. T. Liang, "Fano resonance and persistent current of a quantum ring," Phys. Lett. A, Vol. 330, 307-332, 2004.

    6. Fan, S. H., "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett., Vol. 80, 908-910, 2002.

    7. Rybin , M. V. , A. B. Khanikaev, M. Inoue, A. K. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Bragg scattering induces Fano resonance in photonic crystals," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 8, 86-93, 2010.

    8. Ruan, Z. and S. Fan, "Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle," J. Phys. Chem. C, Vol. 114, 7324-7329, 2009.

    9. Chua, S. L., Y. D. Chong, A. D. Stone, M. Solja, and B. A. Jorge, "Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances," Opt. Express, Vol. 19, 1540-1562, 2011.

    10. Song , J. F. , R. P. Zaccaria, M. B. Yu, and X. W. Sun, "Tunable Fano resonance in photonic crystal slabs," Opt. Express, Vol. 14, 8812-8826, 2006.

    11. Rybin , M. V., A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Fano resonance between Mie and Bragg scattering in photonic crystals," Phys. Rev. Lett., Vol. 103, 023901, 2009.

    12. Hao, F. , Y. Sonnefraud, P. van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance," Nano Lett., Vol. 8, 3983-3988, 2008.

    13. Luk'yanchuk, B., I. Z. Nikolay, A. M. Stefan, J. H. Naomi, N. Peter, G. Harald, and T. C. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.

    14. Liu , N. , T. Weiss, M. Mesch, and L. Langguth, "Planar metama-terial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.

    15. Menzel , C., C. Helgert, C. Rockstuhl, E. Kley, A. Tnnermann, T. Pertsch, and F. Lederer, "Asymetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.

    16. Pendry, J. B. , A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.

    17. Zhang, , S., , W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett., Vol. 94, 037402, 2005.

    18. Moerland , R. J., N. F. van Hulst, H. Gersen, and L. Kuipers, "Probing the negative permittivity perfect lens at optical frequencies using near-¯eld optics and single moleculedetection," Opt. Express, Vol. 13, 1604-1614, 2005.

    19. Yen, T. J. , W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.

    20. Alu , A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2571, 2003.

    21. Lin , W. H. , C. J. Wu, T. J. Yang, and S. J. Chang, "Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer," Progress In Electromagnetics Research, Vol. 118, 151-165, 2011.

    22. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007.

    23. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.