Vol. 28
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-11-30
A Novel EM Analysis of Double-Layered Thick FSS Based on mm -GSM Technique for Radome Applications
By
Progress In Electromagnetics Research Letters, Vol. 28, 53-62, 2012
Abstract
The EM analysis of double-layered thick FSS structure with low-loss dielectric medium between the FSS layers has been carried out using MM-GSM technique. In this analysis, both evanescent and propagating modes are included that enhances the accuracy of the computation. This method provides less computational complexity in the formulation of FSS structures as compared to other numerical techniques. The cascaded FSS structure shows bandpass response (>95% transmission) over a frequency range from 8.84 GHz to 10.74 GHz. It is found that this FSS structure shows very good in-band transmission characteristics and excellent roll-off characteristics outside the band. Further, the dependence of transmission characteristics on the spacing between the FSS layers is also investigated. The optimum bandpass response is achieved for 0.3λ spacing between the layers. This FSS structure offers superior bandpass response and structural rigidity required for airborne radome applications.
Citation
Shiv Narayan, Kurapati Prasad, Raveendranath Nair, and Rakesh Mohan Jha, "A Novel EM Analysis of Double-Layered Thick FSS Based on mm -GSM Technique for Radome Applications," Progress In Electromagnetics Research Letters, Vol. 28, 53-62, 2012.
doi:10.2528/PIERL11101710
References

1. Gerini, G. and L. Zappelli, "Phased arrays of rectangular apertures on conformal cylindrical surfaces: A multimode equivalent network approach," IEEE Trans. Antennas Propagat., Vol. 52, No. 7, 1843-1850, 2004.
doi:10.1109/TAP.2004.831311

2. Gerini, G. and L. Zappelli, "Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface," IEEE Trans. Antennas Propagat., Vol. 53, No. 6, 2020-2030, 2005.
doi:10.1109/TAP.2005.848459

3. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley, New York, 2000.
doi:10.1002/0471723770

4. Lee, , S. W., G. Garrillo, and C. Law, "Simple formulas for transmission through periodic metal grids or plates," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 904-909, 1982.
doi:10.1109/TAP.1982.1142923

5. Kipp , R. A. and C. H. Chan, "A numerically efficient technique for the method of moments solution to planar periodic structures in layered media," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 4, 635-643, 1994.
doi:10.1109/22.285070

6. Vardaxoglou, J. C., A. Hossainzadeh, and A. Stylianou, "Scatter-ing from two-layer FSS with dissimilar lattice geometries," IEE Proceedings --- H, Vol. 140, No. 1, 59-61, 1993.

7. Prakash, V. V. S. and R. Mittra, "An efficient technique for analyzing multiple frequency selective-surface screens with dissimilar periods," Microwave and Optical Technology Letters, Vol. 35, No. 1, 23-27, 2002.
doi:10.1002/mop.10506

8. Munk, B. A., "Space Filter,", U.S. Patent 4125841, 1978.

9. Vardaxoglou, J. C., Frequency Selective Surfaces: Analysis and Design, John Wiley, New York, 1997.

10. Loui, H., "Modal analysis and design of compound gratings and frequency selective surfaces,", Ph.D. Thesis, 139, Department of Electrical and Computer Engineering, University of Colorado, Boulder, 2006.

11. Widenberg, B., "A general mode matching technique applied to band-pass radomes,", Electromagnetic Theory Tech. Report TEAT-7098, 33, Department of Electroscience, Lund Institute of Technology, Sweden, 2001.

12. Widenberg, B., S. Poulsen, and A. Karlsson, "Thick screens perforated with a periodic array of aperture with arbitrary cross-section,", Electromagnetic Theory Tech Report TEAT-7082, 30, Department of Electroscience, Lund Institute of Technology, Sweden, 1999.

13. Wu, T. K., Frequency Selective Surface and Grid Array, John Wiley, New York, 1995.