Vol. 30
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-03-21
Spectro-Temporal Mismatch Analysis of a Transmission Line Based on on-Wafer Optical Sampling
By
Progress In Electromagnetics Research Letters, Vol. 30, 153-162, 2012
Abstract
We present an optical sampling technique that enables exploration of mismatches of a microstrip transmission line based on reflection analyses of electromagnetic pulses. The external electro-optic sampling scheme with a minute crystal detects high-speed electrical pulses over arbitrary locations of a line with very low-intrusiveness. The temporal pulsed signals measured with an on-wafer optical probing system and the corresponding spectra are obtained to analyze the transfer characteristics of a microstrip transmission line with 20 GHz bandwidth. The spectro-temporal response was cross-checked with commercial instruments. Applications of this optical probing technique to explore mismatches at the terminal port - based on both time and frequency domain reflectometry analyses - are also presented.
Citation
Dong-Joon Lee, Jae-Yong Kwon, and Joo-Gwang Lee, "Spectro-Temporal Mismatch Analysis of a Transmission Line Based on on-Wafer Optical Sampling," Progress In Electromagnetics Research Letters, Vol. 30, 153-162, 2012.
doi:10.2528/PIERL11120505
References

1. Agilent Technologies, , Time domain analysis using a network analyzer, Application Note 1287-12, 2011.

2. Agilent Technologies, , De-embedding and embedding S-parameter networks using a vector network analyzer, Application Note 1364-1, 2009.

3. Valdmanis, J. A. and G. A. Mourou, "Subpicosecond electrooptic sampling: Principles and applications," IEEE Journal of Quantum Electronics, Vol. 22, No. 1, 69-78, 1986.
doi:10.1109/JQE.1986.1072867

4. Frankel, M., J. F. Whitaker, G. A. Morou, and J. A. Valdmanis, "Ultrahigh bandwidth vector analyzer based on external electro-optic sampling," Solid State Electronics, Vol. 35, No. 2, 325-332, 1992.
doi:10.1016/0038-1101(92)90236-6

5. Seitz, S., M. Bieler, M. Spitzer, K. Pierz, G. Hein, and U. Siegner, "Optoelectronic measurement of the transfer function and time response of a 70 GHz sampling oscilloscope," Measurement Science and Technology, Vol. 16, No. 10, L7-L9, 2005.
doi:10.1088/0957-0233/16/10/L02

6. Williams, D. F., P. D. Hale, T. S. Clement, and J. M. Morgan, "Calibrated 200-GHz waveform measurement," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 4, 1384-1388, 2005.
doi:10.1109/TMTT.2005.845760

7. Bieler, M., S. Seitz, M. Spitzer, G. Hein, K. Pierz, U. Siegner, M. A. Basu, A. J. A. Smith, and M. R. Harper, "Rise-time calibration of 50-GHz sampling oscilloscopes: Intercomparison between PTB and NPL," IEEE Trans. on Instrum. Meas., Vol. 56, No. 2, 266-270, 2007.
doi:10.1109/TIM.2007.890609

8. Ma, Z., H. Ma, P. Gong, C. Yang, and K. Feng, "Ultrafast optoelectronic technology for radio metrology applications," Journal of Systems Engineering and Electronics, Vol. 21, No. 3, 461-468, 2010.

9. Lee, D. J. and J. F. Whitaker, "A simplified fabry-Pérot electro-optic modulation sensor," IEEE Phot. Tech. Lett., Vol. 20, No. 10, 866-868, 2008.
doi:10.1109/LPT.2008.921127