Vol. 36
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-11-07
Artificial Magnetic Conductors on Wideband Patch Antenna
By
Progress In Electromagnetics Research Letters, Vol. 36, 9-19, 2013
Abstract
The use of Artificial Magnetic Conductor (AMC) as a reflector in a printed antenna is known to improve the antenna's radiation characteristics. This work investigates the implementation of AMC as a reflector on a wideband planar monopole antenna. The investigation is confined to a basic square unit cell of AMC with four possible variations. The AMC structures are constructed with square cells which have either similar square cells or a Perfect Electric Conductor (PEC) as the back plane. These same structures are also fabricated with vias. The impedance bandwidth, gain and power pattern are simulated and measured over the measured -10 dB impedance bandwidth of 3 GHz to 10 GHz. The outcome of the investigation is that, for the antenna element and AMC structures considered in this study, a gain enhancement of up to 6 dB can be achieved with the AMC structures. In addition, introduction of vias is observed not to influence gain, though it improves cross-polarization levels by 3 dB to 5 dB for AMC constructed of squares backed by PEC.
Citation
Gnanam Gnanagurunathan, and Krishnasamy Selvan, "Artificial Magnetic Conductors on Wideband Patch Antenna," Progress In Electromagnetics Research Letters, Vol. 36, 9-19, 2013.
doi:10.2528/PIERL12092501
References

1. Yang, F. and Y. Rahmat-Samii, Electromagnetic Bandgap Structures in Antenna Engineering, Cambridge University Press, 2009.

2. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

3. Qu, D., L. Shafai, and A. Foroozesh, "Improving microstrip patch antenna performance using EBG substrates," IEE Proceedings on Microwaves, Antennas and Propagation, Vol. 153, 558-563, 2006.
doi:10.1049/ip-map:20060015

4. Elsheakh, , D. A., H. A. Elsadek, E. A. Abdallah, H. Elhenawy, and M. F. Iskandar, "Enhancement of microstrip monopole antenna bandwidth by using EBG structures," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 959-962, 2009.
doi:10.1109/LAWP.2009.2030375

5. De Cos, M. E., Y. Alvarez-Lopez, and F. Las-Heras, "On the influence of coupling AMC resonances for RCS reduction in the SHF band," Progress In Electromagnetics Research, Vol. 117, 103-119, 2011.

6. C. C. , Chiau, X. Chen, and C. Parini, "Multiperiod EBG structure for wide stopband circuits," IEE Proceedings on Microwaves Antennas and Propagation, Vol. 150, 489-492, 2003.

7. Akhoondzadeh-Asl, L., D. J. Kern, P. S. Hall, and D. H. Werner, "Wideband dipoles on electromagnetic bandgap ground planes," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2426-2434, 2007.
doi:10.1109/TAP.2007.904071

8. Zhang, Y., J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, "Planar artificial magnetic conductors and patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2003.

9. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 2005.
doi:10.1109/TAP.2004.840528

10. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "Low-profile resonant cavity antenna with artificial magnetic conductor ground plane," Electronics Letters, Vol. 40, No. 7, 405-406, 2004.
doi:10.1049/el:20040306

11. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

12. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701

13. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

14. Chung, K., J. Kim, and J. Choi, "Wideband microstrip-fed monopole antenna having frequency band-notch function," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 766-768, 2005.
doi:10.1109/LMWC.2005.858969