Vol. 39
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-04-23
Compact Multiport Array with Reduced Mutual Coupling
By
Progress In Electromagnetics Research Letters, Vol. 39, 161-168, 2013
Abstract
A novel design of decoupling network for a compact three-element array is presented. The proposed decoupling network has simple and compact structure that can be implemented easily with microstrip lines. The conventional microstrip open stubs can be used to match the decoupled ports of the array. The proposed decoupling and matching network is applied to a compact three-monopole array operating at 2.4 GHz. Both the simulated and the measured results show that the ports of the array are well matched and decoupled at the operating frequency.
Citation
Yantao Yu, Ying Jiang, Wenjiang Feng, Sahr Mbayo, and Shiyong Chen, "Compact Multiport Array with Reduced Mutual Coupling," Progress In Electromagnetics Research Letters, Vol. 39, 161-168, 2013.
doi:10.2528/PIERL13030902
References

1. Hossa, R. and M. Bialkowski, "Mutual coupling compensation in narrowband small linear-antenna arrays," Microw. Opt. Tech. Letts., Vol. 40, No. 5, 391-396, 2004.
doi:10.1002/mop.11390

2. Yu, X., L. Wang, H.-G. Wang, X. Wu, and Y. Shang, "A novel multiport matching method for maximum capacity of an indoor MIMO system," Progress In Electromagnetics Research, Vol. 130, 67-84, 2012.

3. Bhatti, R., S. Yi, and S.-O. Park, "Compact antenna array with port decoupling for LTE-standardized mobile phones," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1430-1433, 2009.
doi:10.1109/LAWP.2010.2040677

4. Friel, E. M. and K. M. Pasala, "Effects of mutual coupling on the performance of STAP antenna arrays," IEEE Trans. Aerosp. Electron Syst., Vol. 36, No. 2, 518-527, 2000.
doi:10.1109/7.845236

5. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

6. Lee, J.-H. and Y.-L. Chen, "Performance analysis of antenna array beamformers with mutual coupling effects," Progress In Electromagnetics Research B, Vol. 33, 291-315, 2011.
doi:10.2528/PIERB11052802

7. Getu, B. and J. Andersen, "The MIMO cube --- A compact MIMO antenna," IEEE Trans. Wireless Comm., Vol. 4, No. 3, 1136-1141, 2005.
doi:10.1109/TWC.2005.846997

8. Zheng, J., X. Gao, Z. Zhang, and Z. Feng, "A compact eighteen-port antenna cube for MIMO systems," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 445-455, 2012.
doi:10.1109/TAP.2011.2173449

9. Coetzee, J. C. and Y. Yu, "Port decoupling for small arrays by means of an eigenmode feed network," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1587-1593, 2008.
doi:10.1109/TAP.2008.923301

10. Lee, T.-I. and Y. Wang, "Mode-based information channels in closely coupled dipole pairs," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 3804-3811, 2008.
doi:10.1109/TAP.2008.2007379

11. Mohammad, S. S., B. N. Ahmed, and N. A. Daniel, "Isolation mprovement in a dual-band dual element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.

12. Feresidis, A. P. and Q. Li, "Miniaturised slits for decoupling PIFA array elements on handheld devices," Electronics Letters, Vol. 48, No. 6, 310-312, 2012.
doi:10.1049/el.2012.0264

13. Jiang, Y., Y. Yu, M. Yuan, and L. Wu, "A compact printed monopole array with defected ground structure to reduce the mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1963-1974, 2011.
doi:10.1163/156939311798072036

14. Chiu, C.-Y., C.-H. Cheng, R. Murch, and C. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

15. Lin, D.-B., I.-T. Tang, and M.-Z. Hong, "A compact quad-band PIFA by tuning the defected ground structure for mobile phones," Progress In Electromagnetics Research B, Vol. 24, 173-189, 2010.
doi:10.2528/PIERB10070608

16. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

17. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

18. Dossche, S., S. Blanch, and J. Romeu, "Optimum antenna matching to minimize signals correlation on a two-port antenna diversity system," Electronics Letters, Vol. 40, No. 19, 1164-1165, 2004.
doi:10.1049/el:20045737

19. Chen, S.-C., Y.-S. Wang, and S.-J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469

20. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communication," EEE Trans. Vehic. Technol., Vol. 36, No. 4, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

21. Thaysen, J. and K. Jakobsen, "Envelope correlation in (N, N) MIMO antenna array from scattering parameters," Microw. Opt. Tech. Letts., Vol. 48, No. 5, 832-834, 2006.
doi:10.1002/mop.21490