Vol. 42
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-08-25
On the Use of Metal Gratings to Reduce Diffraction from a Finite Ground Plane in Circularly-Polarized Microstrip Arrays
By
Progress In Electromagnetics Research Letters, Vol. 42, 65-78, 2013
Abstract
It is shown that metal gratings can be used to improve the cross polarization of circularly-polarized aperture-coupled microstrip antennas. The metal gratings reduce edge diffraction from the finite-size grounded dielectric slab on which the antennas are printed. The edge diffraction is due to surface waves that can propagate in the grounded dielectric slab. The design of the metal grating is based on an analytical model, which results in a first-order estimation for the design of the metal grating structure. The model provides physical insight and appears to be accurate enough for the application. Using this model, a prototype was developed, consisting of a circularly-polarized 2×2 microstrip array with associated feeding network. Measurements show that the axial ratio can be reduced down to 1.75 dB within the beam width of the antenna.
Citation
Adrianus Bernardus Smolders, Rob M. C. Mestrom, Abolghasem Zamanifekri, and Ad C. F. Reniers, "On the Use of Metal Gratings to Reduce Diffraction from a Finite Ground Plane in Circularly-Polarized Microstrip Arrays," Progress In Electromagnetics Research Letters, Vol. 42, 65-78, 2013.
doi:10.2528/PIERL13070203
References

1. Dell, J., "The maritime market: VSAT rules," SatMagazine, 30-34, Dec. 2008, available on-line: www.satmagazine.com.

2. Adrian, A. and D. H. Schaubert, "Dual aperture-coupled microstrip antenna for dual or circular polarization," Electronics Letters, Vol. 23, No. 23, 1226-1228, 1987.
doi:10.1049/el:19870854

3. Targonski, S. D. and D. M. Pozar, "Design of wideband circularly polarized aperture-coupled microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 214-220, 1993.
doi:10.1109/8.214613

4. Huang, J., "A technique for an array to generate circular polarization with linearly polarized elements," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 9, 1113-1124, Sep. 1986.
doi:10.1109/TAP.1986.1143953

5. Hall, P. S., J. Huang, E. Rammos, and A. Roederer, "Gain of circularly polarized arrays composed of linearly polarized elements," Electronics Letters, Vol. 25, No. 2, 124-125, 1989.
doi:10.1049/el:19890091

6. Smolders, A. B. and U. Johannsen, "Axial ratio enhancement for circularly-polarized millimeter-wave phased-arrays using a sequential rotation technique," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3465-3469, 2011.
doi:10.1109/TAP.2011.2161443

7. Baggen, L., S. Holzwarth, W. Simon, and O. Litschke, "Phased array using the sequential rotation principle: Analysis of coupling effects," IEEE International Symposium on Phased Array Systems and Technology, 571-576, Oct. 14-17, 2003.

8. Pawlak, H. and A. F. Jacob, "An external calibration scheme for DBF antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 59-67, Jan. 2010.
doi:10.1109/TAP.2009.2036195

9. Smolders, A. B., R. M. C. Mestrom, A. C. F. Reniers, and M. Geurts, "A shared aperture dual-frequency circularly polarized microstrip array antenna," IEEE Antennas and Wireless Technology Letters (AWPL), Vol. 12, 120-123, 2013.
doi:10.1109/LAWP.2013.2242427

10. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric EBG structures for reducing surface waves in antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3210-3218, 2005.
doi:10.1109/TAP.2005.856365

11. Bolt, R. J., D. J. Bekers, N. Llombart, A. Neto, and G. Gerini, "Application of EBG structures at sub-array level," Proc. of the 36th European Microwave Conference, 1052-1055, Sep. 2006.

12. Rahman, M. and M. A. Stuchly, "Circularly polarised patch antenna with periodic structure," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 149, No. 3, 141-146, 2002.
doi:10.1049/ip-map:20020392

13. Zheng, B. and Z. Shen, "Effect of a finite ground plane on circularly polarized microstrip antennas," IEEE International Symposium on Antennas and Propagation, Vol. 2A, 238-241, Jul. 3-8, 2005.

14. Das, N. K. and A. Mohanty, "Infinite array of printed dipoles integrated with a printed strip grating for suppression of cross-polar radiation. I. Rigorous analysis," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 6, 960-972, 1997.
doi:10.1109/8.585743

15. Sigelmann, R. A. and A. Ishimaru, "Radiation from periodic structures excited by an aperiodic source," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 3, 354-364, 1965.
doi:10.1109/TAP.1965.1138437

16. Sigelmann, R. A., "Surface waves on a grounded dielectric slab covered by a periodically slotted conducting plane," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 5, 672-676, 1967.
doi:10.1109/TAP.1967.1139010

17. Bellamine, F. H. and E. F. Kuester, "Guided waves along a metal grating on the surface of a grounded dielectric slab," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 7, 1190-1197, 1994.
doi:10.1109/22.299756

18. Kaganovsky, Y. and R. Shavit, "Analysis of radiation from a line source in a grounded dielectric slab covered by a metal strip grating," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 135-143, 2009.
doi:10.1109/TAP.2008.2009667

19. Jacobsen, J., "Analytical, numerical, and experimental investigation of guided waves on a periodically strip-loaded dielectric slab," IEEE Transactions on Antennas and Propagation, Vol. 18, No. 3, 379-388, 1970.
doi:10.1109/TAP.1970.1139696

20. Maci, S., M. Casaletti, M. Caiazzo, and A. Cucini, "Dispersion analysis of printed periodic structures by using a pole-zero network synthesis," 17th International Conference on Applied Electromagnetics and Communications, ICECom 2003, 300-303, 2003.
doi:10.1109/ICECOM.2003.1291013

21. Guglielmi, M. and H. Hochstadt, "Multimode network description of a planar periodic metal-strip grating at a dielectric interface.III. Rigorous solution ," IEEE Transactions on Microwave Theory nd Techniques, Vol. 37, No. 5, 902-909, 1989.
doi:10.1109/22.17458

22. Sande, H. V., H. de Gersem, F. Henrotte, and K. Hameyer, "Solving nonlinear magnetic problems using Newton trust region methods," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 1709-1712, 2003.

23. Hirtenfelder, F. and G. Lubkowski, "3D field simulations using FI time domain technique of wedge- and parabolic-shaped left handed materials (LHM)," International Workshop on Antenna Technology (IWAT), 259-262, 2007.