Vol. 43
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-14
Realization of Miniaturized Quadrature Hybrid Coupler with Reduced Length Branch Arms Using Recursively Loaded Stubs
By
Progress In Electromagnetics Research Letters, Vol. 43, 45-54, 2013
Abstract
This paper presents a novel design of miniaturized microstrip quadrature coupler at 2.45 GHz. The design topology is based on reduced transmission line branch arms using recursively loaded stubs that contribute to the compact size. The proposed coupler result in a size reduction of 70.4% when compared to a conventional branch line hybrid. The designed coupler provides, at the operating frequency, a 25 dB isolation and exhibits equal power division at the output ports with quadrature phase difference. A fabricated prototype is developed with simulation and measurement in close agreement.
Citation
Rowdra Ghatak, Manimala Pal, and Biswajit Sarkar, "Realization of Miniaturized Quadrature Hybrid Coupler with Reduced Length Branch Arms Using Recursively Loaded Stubs," Progress In Electromagnetics Research Letters, Vol. 43, 45-54, 2013.
doi:10.2528/PIERL13071304
References

1. Pozar, D. M., Microwave Engineering, 3rd edition, New York, Wiley, 2005.
doi:10.1109/13.53636

2. Fooks, E. H. and R. A. Zakarevicius, Microwave Engineering Using Microwave Circuits, Prentice Hall, New York, 1990.

3. Ghali, H. and T. A. Moselhy, "Miniaturized fractal rat-race, branch-line, and coupled-line hybrids," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 11, 2513-2520, Nov. 2004.
doi:10.1109/TMTT.2004.837154

4. Sun, K. O., S. J. Ho, C. C. Yen, and D. Weide, "A compact branch-line coupler using discontinuous microstrip lines," IEEE Microwave and Wireless Technology Letters, Vol. 15, No. 8, 519-520, 2005.
doi:10.1109/LMWC.2005.852789

5. Liao, S. S., P. T. Sun, N. C. Chin, and J. T. Peng, "A novel compact size branch-line coupler," IEEE Microwave and Wireless Technology Letters, Vol. 15, No. 9, 588-590, Sep. 2005.
doi:10.1109/LMWC.2005.855378

6. Tang, C. W. and M. G. Chen, "Synthesizing microstrip branch line couplers with predetermined compact size and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 9, 1926-1934, 2007.
doi:10.1109/TMTT.2007.904331

7. Jung, S.-C., R. Negra, and F. M. Ghannouchi, "A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 2950-2953, 2008.
doi:10.1109/TMTT.2008.2007323

8. Tseng, C. H. and C. L. Chang, "A rigorous design methodology for compact planar branchline and rat-race couplers with asymmetrical T structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 2085-2092, Jul. 2012.

9. Elhiwaris, M. Y. O., S. K. A. Rahim, U. A. K. Okonkwo, and N. M. Jizat, "Miniaturize size branch line coupler using open stubs with high low impedances," Progress In Electromagnetic Research Letters, Vol. 23, 65-74, Apr. 2011.

10. Sun, L., Y. Z. Yin, X. Lei, and V. Wong, "A novel miniaturized branch line coupler with equivalent transmission Lines," Progress In Electromagnetics Research Letters, Vol. 38, 35-44, 2013.

11. Al-Khateeb, L., "Miniaturized hybrid branch line couplers based on a square split resonator loading technique," Progress In Electromagnetics Research Letters, Vol. 40, 153-162, 2013.

12. , , Users Manual, CST Microwave studio 2010.