Vol. 46
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-04-30
Implementation of a Pldro with a Fractional Multiple Frequency of Reference
By
Progress In Electromagnetics Research Letters, Vol. 46, 13-18, 2014
Abstract
A PLDRO (Phase Locked Dielectric Resonator Oscillator) with the output frequency of a fractional multiple of reference is proposed and implemented. The key element in the proposed PLDRO is an image rejection mixer placed between a VCDRO (Voltage Controlled Dielectric Resonator Oscillator) and SPD (Sampling Phase Detector). The image rejection mixer shifts the coupled signal from the VCDRO before the signal feeds the SPD. Therefore, the output frequency of the PLDRO can be realized such that it is not harmonically related with its reference frequency. The frequency divider and multiplier generate the IF frequency for the mixer from the reference frequency. The general PLL (Phase Locked Loop) design parameters such as the damping coefficient and the natural frequency are derived for the proposed topology of the PLDRO. A 7.25 GHz PLDRO with a 100MHz reference, intended for use as a local oscillator for a ka band Block-up Converter (BUC), is designed and measured. A BJT (Bipolar Junction Transistor) is used as an active component of the VCDRO and a modified two micro-strip line coupled DR model is presented and used for frequency tuning range estimation. The measured phase noise at 10 kHz/100 kHz offset is 101 dBc/Hz and 115 dBc/Hz, respectively. The fabricated PLDRO size is 100 mm by 105 mm by 23 mm including a 100 MHz reference crystal oscillator.
Citation
Won Il Chang, and Chul Soon Park, "Implementation of a Pldro with a Fractional Multiple Frequency of Reference," Progress In Electromagnetics Research Letters, Vol. 46, 13-18, 2014.
doi:10.2528/PIERL14021802
References

1. Tsutsumi, K., M. Komaki, M. Shimozawa, and N. Suematsu, "Low phase-noise ku-band PLL-IC with ---104:5 dBc/Hz at 10 kHz o®set using SiGe HBT ECL PFD," Asia Pacific Microwave Conference, 373-376, Dec. 2009.

2. Chen, Z., C.-C. Wang, and P. Heydari, "W-band frequency synthesis using a Ka-band PLL and two different frequency triplers," IEEE Radio Frequency Integrated Circuits Symposium, 1-4, Jun. 2011.

3. Gai, X., G. Liu, S. Chartier, A. Trasser, and H. Schumacher, "A PLL with ultra low phase noise for millimeter wave application," 2010 European Microwave Conference (EuMC), 9-72, Sep. 2010.

4. Follmann, R., D. Kother, F. Herzel, F. Winkler, and H.-V. Heyer, "A low-noise 8-12 GHz fractional-N PLL in SiGe BiCMOS technology," 2010 European Microwave Integrated Circuits Conference (EuMIC), 98-101, Sep. 2010.

5. Herzel, F., S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, "An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications," Proc. 2009 IEEE Radio Frequency Integrated Circuits Symp. (RFIC 2009), 329-332, Boston, MA, Jun. 2009.

6. Brilliant, A., "Understanding phase-locked DRO design aspects," Microwave Journal, Sep. 2000.

7. Gravel, J.-F. and J. S. Wight, "On the conception and analysis of a 12-GHz push-push phase-locked DRO," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 153-159, Jan. 2006.
doi:10.1109/TMTT.2005.860508

8. Cao, Z. and X.-H. Tang, "Fundamental wave phase-locked dual band push push DRO using out of phase Wilkinson power combiner," IET Electronics letters, Vol. 46, No. 8, 572-573, 2010.
doi:10.1049/el.2010.0550

9. Kajfez, D. and P. Guillon, Dielectric Resonators, Artech House, 1986.

10. IESS-308 "Intelsat Earth Station Standards (IESS); Performance characteristics for intermediate data rate digital carriers using convolutional encoding/Viterbi encoding and QPSK modulation (QPSK/IDR),", 1998.