Vol. 48
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-22
Novel Coplanar EBG Low Pass Filter
By
Progress In Electromagnetics Research Letters, Vol. 48, 83-93, 2014
Abstract
The traditional coplanar electromagnetic bandgap (EBG) structure is analyzed. The method is studied to lower the center frequency and broaden the bandwidth in this paper. A novel structure of U-bridged EBG power plane is proposed. The simulation and test results show that the bandwidth of the new structure is 4.32 GHz, and the lower side cutoff frequency is at 380 MHz with stopband depth at -40 dB. The elimination of simultaneous switching noise (SSN) as this kind of U-bridged coplanar EBG structure is more effective below 1 GHz. In addition, the eye diagram of the structure is analyzed. The degradation of the maximum eye open and the maximum eye width on the structure is about 1.2% and 5.7% respectively. Finally, the IR-drop and dc resistance is accurately investigated through 3-D simulations.
Citation
Xing-Jun Wang, and Ling-Feng Shi, "Novel Coplanar EBG Low Pass Filter," Progress In Electromagnetics Research Letters, Vol. 48, 83-93, 2014.
doi:10.2528/PIERL14040903
References

1. Ramesh, A. and V. E. George, "Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 6, 1629-1639, 2003.
doi:10.1109/TMTT.2003.812555

2. Jong, H. K., U. S. Dong, I. K. Sang, and G. Y. Jong, "Novel electromagnetic bandgap array structure on power distribution network for suppressing simultaneous switching noise and minimizing effects on high-speed signals," IEEE Transaction on Electromagnetic Compatibility, Vol. 52, No. 2, 365-372, 2010.
doi:10.1109/TEMC.2010.2045894

3. Wang, T.-K., C.-Y. Hsieh, H.-H. Chuang, and T.-L. Wu, "Design and modeling of a stopband-enhanced EBG structure using ground surface perturbation lattice for power/ground noise suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 2047-2054, 2009.
doi:10.1109/TMTT.2009.2025466

4. Kang, H.-D., H. Kim, S.-G. Kim, and J.-G. Yook, "A localized enhanced power plane topology for wideband suppression of simultaneous switching noise," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 373-380, 2010.
doi:10.1109/TEMC.2010.2044415

5. Ding, T.-H., Y.-S. Li, D.-C. Jiang, Y.-Z. Qu, and X. Yan, "Estimation method for simultaneous switching noise in power delivery network for high-speed digital system design," Progress In Electromagnetics Research, Vol. 125, 79-95, 2012.
doi:10.2528/PIER12011202

6. Gao, M.-J., L.-S. Wu, and J. F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic bandgap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.

7. Wu, T.-L., C.-C. Wang, Y.-H. Lin, T.-K. Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 174-176, 2005.
doi:10.1109/LMWC.2005.844216

8. Wang, X.-H., B.-Z. Wang, Y.-H. Bi, and W. Shao, "A novel uniplanar compact photonic bandgap power plane with ultra-broadband suppression of ground bounce noise," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 267-268, 2006.
doi:10.1109/LMWC.2006.873509

9. Qin, J. and M. R. Omar, "Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 9, 487-489, 2006.
doi:10.1109/LMWC.2006.880713

10. Wu, T. L. and T. K. Wang, "Embedded power plane with ultra-wide stop-band for simultaneously switching noise on high-speed circuits," Electronics Letters, Vol. 42, No. 4, 213-214, 2006.
doi:10.1049/el:20063498

11. He, Y., L. Li, C. H. Liang, Q. H. Liu, L. Li, and H. B. Wen, "Leafy EBG structures for ultra-wideband SSN suppression in power/ground plane pairs," Electronics Letters, Vol. 46, No. 11, 768-769, 2010.
doi:10.1049/el.2010.0758

12. He, Y., C.-H. Liang, and Q.-H. Liu, "Novel array EBG structures for ultrawideband simultaneous switching noise suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 588-591, 2011.

13. Chu, H., X. Q. Shi, and Y. X. Guo, "Ultra-wideband bandpass filter with a notch band using EBG array etched ground," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 203-209, 2011.
doi:10.1163/156939311794362786

14. He, Y., L. Li, H. Q. Zhai, X. J. Dang, C.-H. Liang, and Q. H. Liu, "Sierpinski space-filling curves and their application in high-speed circuits for ultrawideband SSN suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 568-571, 2010.

15. Li, L., Q. Chen, Q.-W. Yuan, and K. Sawaya, "Ultrawideband suppression of ground bounce noise in multilayer PCB using locally embedded planar electromagnetic band-gap structures," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 740-743, 2009.

16. Huang, C.-H. and T.-L. Wu, "Analytical design of via lattice for ground planes noise suppression and application on embedded planar EBG structures," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 1, 21-30, 2013.
doi:10.1109/TCPMT.2012.2220139

17. Wu, T.-L., Y.-H. Lin, and S.-T. Chen, "A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 7, 337-339, 2004.
doi:10.1109/LMWC.2004.829275

18. Zhang, M.-S., Y.-S. Li, C. Jia, and L.-P. Li, "A power plane with wideband SSN suppression using a multi-via electromagnetic bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 307-309, 2007.
doi:10.1109/LMWC.2007.892992

19. Kim, B. and D.-W. Kim, "Bandwidth enhancement for SSN suppression using a spiral-shaped power island and a modified EBG structure for a λ/4 open stub," Electronics and Telecommunications Research Institute Journal, Vol. 31, No. 2, 201-208, 2009.

20. Shahparnia, S. and O. M. Ramahi, "Design, implementation, and testing of miniaturized electromagnetic bandgap structures for broadband switching noise mitigation in high-speed PCBs," IEEE Transactions on Advanced Packaging, Vol. 30, No. 2, 171-179, 2007.
doi:10.1109/TADVP.2007.895612

21. Mahdi, M. S., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.

22. Scogna, A. C., A. Orlandi, and V. Ricchiuti, "Signal and power integrity analysis of differential lines in multilayer printed circuit boards with embedded electromagnetic bandgap structures," IEEE Transaction on Electromagnetic Compatibility, Vol. 52, No. 2, 357-364, 2010.
doi:10.1109/TEMC.2009.2027125

23. He, H.-S., X.-Q. Lai, W.-D. Xu, J.-G. Jiang, M.-X. Zang, Q. Ye, and Q. Wang, "Efficient EMI reduction in multilayer PCB using novel wideband electromagnetic bandgap structures," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 4, 363-370, 2011.
doi:10.1002/mmce.20516

24. Wu, T.-L., H.-H. Chuang, and T.-K. Wang, "Overview of power integrity solutions on package and PCB: Decoupling and EBG isolation," IEEE Transactions on Electromagnetic Compatibility,, Vol. 52, No. 2, 346-356, 2010.
doi:10.1109/TEMC.2009.2039575

25. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

26. Gujral, M. J., L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

27. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

28. Kim, K. H. and E. S.-A. Jose, "Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 178-186, 2008.
doi:10.1109/TMTT.2007.912199

29. Choi, J., D. G. Kam, D. Chung, K. Srinivasan, V. Govind, J. Kim, and M. Swaminathan, "Near-field and far-field analyses of alternating impedance electromagnetic bandgap (AI-EBG) structure for mixed-signal applications," IEEE Transactions on Advanced Packaging, Vol. 30, No. 2, 180-190, 2007.
doi:10.1109/TADVP.2007.896921

30. Raimondo, L., F. D. Paulis, and A. Orlandi, "A simple and e±cient design procedure for planar electromagnetic bandgap structures on printed circuit boards," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 482-490, 2011.
doi:10.1109/TEMC.2010.2051549

31. De Paulis, F., L. Raimondo, and A. Orlandi, "IR-drop analysis and thermal assessment of planar electromagnetic bandgap structures for power integrity applications," IEEE Transactions on Advanced Packaging, Vol. 33, No. 3, 617-622, 2010.
doi:10.1109/TADVP.2009.2033572

32. Di Febo, D., M. H. Nisanci, F. De Paulis, and A. Orlandi, "Impact of planar electromagnetic band-gap structures on IR-drop and signal integrity in high speed printed circuit boards," 2012 IEEE EMC ERROPE, 1-5, Rome, Italy, 2012.