Vol. 47
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-06-23
Novel High-Selectivity Dual-Band Substrate Integrated Waveguide Filter with Multi-Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 47, 7-12, 2014
Abstract
A novel dual-band filter based on substrate integrated waveguide (SIW) is presented in this paper. The proposed filter is composed of two filters with different center frequencies and bandwidths, where they share the input and output ports with source-load coupling using rectangular SIW cavity structure. Muliti-transmission zeros have been obtained through electrical coupling between the source and load, which improves the frequency-selective characteristics of the filter greatly. Finally, a Ku-band substrate integrated waveguide dual-band filter with bandwidths of 220 MHz and 120 MHz was finally designed, fabricated, and measured. The measurement results are found to be in good agreement with the simulation results.
Citation
Guo Hui Li, Xiao-Qi Cheng, Hao Jian, and Huan-Ying Wang, "Novel High-Selectivity Dual-Band Substrate Integrated Waveguide Filter with Multi-Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 47, 7-12, 2014.
doi:10.2528/PIERL14051801
References

1. Huang, C. L. and C. L. Pan, "Dual-band multilayer ceramic microwave bandpass filter for applications in wireless communication," Microwave and Optical Technology Letters, Vol. 32, No. 5, 327-329, 2002.
doi:10.1002/mop.10169

2. Tsa, L. C. and C. W. Hsue, "Dual band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1111-1117, 2004.
doi:10.1109/TMTT.2004.825680

3. Lee, J., M. S. Uhm, and I. B. Yom, "A dual-passband filter of canonical structure for satellite applications," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 271-273, 2004.
doi:10.1109/LMWC.2004.828026

4. Lenoir, P., S. Bila, F. Seyfert, D. Baillargeat, et al. "Synthesis and design of asymmetrical dual-band bandpass filters based on equivalent network simplification," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 7, 3090-3097, 2006.
doi:10.1109/TMTT.2006.877037

5. Velazquez-Ahumada, M. D. C., J. Martel-Villagr, F. Medina, and F. Mesa, "Application of stub loaded folded stepped impedance resonators to dual band filter design," Progress In Electromagnetics Research, Vol. 102, 107-124, 2010.
doi:10.2528/PIER10011406

6. Lee, C. H., I. C. Wang, and C. I. G. Hsu, "Dual-band balanced BPF using quarter wavelength stepped-impedance resonators and folded feed lines," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2441-2449, 2009.

7. Weng, M.-H., S.-K. Liu, H.-W. Wu, and C.-H. Hung, "A dual-band bandpass filter having wide and narrow bands simultaneously using multilayered stepped impedance resonators," Progress In Electromagnetics Research Letters, Vol. 13, 139-147, 2010.
doi:10.2528/PIERL10022401

8. Macchiarella, G. and S. Tamiazzo, "Design techniques for dual-passband filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3265-3271, 2005.
doi:10.1109/TMTT.2005.855749

9. Lee, C. H., C. I. G. Hsu, and C. C. Hsu, "Balanced dual-band BPF with stub-loaded SIRs for common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 2, 70-72, 2010.
doi:10.1109/LMWC.2009.2038433

10. Liu, X., L. Katehi, and D. Peroulis, "Novel dual-band microwave filter using dual-capacitively-loaded cavity resonators," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 11, 610-612, 2010.
doi:10.1109/LMWC.2010.2059696

11. Huang, T. H., C. S. Chang, and H. J. Chen, "Simple method for a K-band SIW filter with dual-mode quasi-elliptic function response," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1246-1248, 2007.
doi:10.1002/mop.22465

12. Zhang, X. C., J. Xu, Z. Y. Yu, et al. "C-band half mode substrate integrated waveguide ( HMSIW) filter," Microwave and Optical Technology Letters, Vol. 50, No. 2, 275-277, 2008.
doi:10.1002/mop.23064

13. Chen, J., B. Wu, L. W. Jiang, and C. H. Liang, "A compact hexagonal dual-band substrate integrated waveguide filter based on extracted-pole technque," Microwave and Optical Technology Letters, Vol. 53, No. 3, 562-564, 2011.
doi:10.1002/mop.25799

14. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with chebyshev and quasi-elliptic responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2569-2578, 2007.
doi:10.1109/TMTT.2007.909603

15. Dong, Y. and T. Itoh, "Miniaturized dual-band substrate integrated waveguide filters using complementary split-ring resonators," IEEE MTT-S International Microwave Symposium Digest (MTT), 1-4, Baltimore, MD, USA, 2011.

16. Dong, Y., C.-T. M. Wu, and T. Itoh, "Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators," IET Microw. Antennas Propag., Vol. 6, No. 6, 611-620, 2012.
doi:10.1049/iet-map.2011.0448

17. Chu, Y. C. and Y. S. Cheng, "A simple and effective method for microstrip dual-band filters design," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 246-248, 2006.
doi:10.1109/LMWC.2006.873584

18. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

19. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

20. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, Wiley, New York, 2001.
doi:10.1002/0471221619