Vol. 49
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-09-30
Multiband Compact Low SAR Mobile Hand Held Antenna
By
Progress In Electromagnetics Research Letters, Vol. 49, 65-71, 2014
Abstract
With the vast emergence of new mobile applications, multiband operation in a compact size is mandatory for market penetration. In this paper, a new mobile handset antenna suitable for both mobile and wireless LAN services is presented. The antenna operates for most of the mobile applications such as the GSM 900, DCS 1800, PCS 1900, UMTS 2100, and most of the LTE bands, especially the low frequency LTE 700 band at -10 dB. The antenna also supports the WIMAX, WLAN, and the ISM bands. The antenna not only has a compact size, but also supports a low SAR radiation at all the operating frequencies. The antenna consists of two concentric open rings that act as quarter wavelength monopoles. The inner ring radiates at 900 MHz, while the outer ring radiates at 700 MHz. The inner ring works as a monopole radiator as well as a slot radiator fed by another rectangular monopole. The advantage of the slot is that it supports a wide range of modes that by its role open the radiation band from 1.65 to 3.6 GHz. The antenna meets three challenging parameters: compact size, multiband operation including low frequency bands, and low SAR radiation. Good agreement is noticed between the experimental and simulated results.
Citation
Haythem Hussein Abdullah, and Kamel Salah Sultan, "Multiband Compact Low SAR Mobile Hand Held Antenna," Progress In Electromagnetics Research Letters, Vol. 49, 65-71, 2014.
doi:10.2528/PIERL14061605
References

1. Sesia, S., I. Toufik, and M. Baker, LTE --- The UMTS Long Term Evolution: From Theory to Practice, Wiley, Chichester, U.K., 2009.
doi:10.1002/9780470742891

2. Bhatti, R. A., S. Yi, and S. Park, "Compact antenna array with port decoupling for LTEstandardized mobile phones," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1430-1433, 2009.
doi:10.1109/LAWP.2010.2040677

3. Young, C. W., Y. B. Jung, and C. W. Jung, "Octaband internal antenna for 4G mobile handset," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 817-819, 2011.
doi:10.1109/LAWP.2011.2164049

4. Wong, K. L. and W. Y. Chen, "Small-size printed loop-type antenna integrated with two stacked coupled-fed shorted strip monopoles for eight-band LTE/GSM/UMTS operation in the mobile," Microwave and Optical Technology Letters, Vol. 52, No. 7, 1471-1476, Jul. 2010.
doi:10.1002/mop.25257

5. Guo, Q., R. Mittra, F. Lei, Z. Li, J. Ju, and J. Byun, "Interaction between internal antenna and external antenna of mobile phone and hand effect," IEEE Trans. on Antennas and Propag., Vol. 61, No. 2, Feb. 2013.
doi:10.1109/TAP.2012.2220323

6. 3GPP "3rd generation partnership project; technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 10),", 3GPP TS36.101 V10.4.0, Table 5.5-1 E-UTRA, Sep. 2011.

7. Zhai, H., Z. Ma, Y. Han, and C. Liang, "A compact printed antenna for triple-band WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 65-68, 2013.
doi:10.1109/LAWP.2013.2238881

8. Chen, W. S. and W. C. Jhang, "A planar WWAN/LTE antenna for portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 19-22, 2013.
doi:10.1109/LAWP.2012.2237011

9. Chu, F. H. and K. L. Wong, "Internal coupled-fed dual-loop antenna integrated with a USB connector for WWAN/LTE mobile handset," IEEE Trans. on Antennas and Propag., Vol. 59, No. 11, 4215-4221, Nov. 2011.

10. Chiu, C.-W., C.-H. Chang, and Y.-J. Chi, "A meandered loop antenna for LTE/WWAN operations in a smart phone," Progress In Electromagnetics Research C, Vol. 16, 147-160, 2010.
doi:10.2528/PIERC10072503

11. Wong, K. L., W. Y. Chen, C. Y. Wu, and W. Y. Li, "Small-size internal eight-band LTE/WWAN mobile phone antenna with internal distributed LC matching circuit," Microw. Opt. Technol. Lett., Vol. 52, 2244-2250, 2010.
doi:10.1002/mop.25431

12. Kang, T. W. and K. L. Wong, "Chip-inductor-embedded small-size printed strip monopole for WWAN operation in the mobile phone," Microw. Opt. Technol. Lett., Vol. 51, 966-971, 2009.
doi:10.1002/mop.24225

13. IEEE C95.1-2005 "IEEE standards for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", Institute of Electrical and Electronics Engineers, New York, 2005.

14. International Non-Ionizing Radiation Committee of the International Radiation Protection Association "Guidelines on limits on exposure to radio frequency electromagnetic fields in the frequency range from 100 kHz to 300 GHz," Health Physics, Vol. 54, No. 1, 115-123, 1988.

15. CST Microwave Studio Suite 2011 User’s Manual, www.cst.com, .

16. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. II. Measurements in the frequency range 10Hz to 20GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

17. Gabriel, C., "Tissue equivalent material for hand phantoms," Phys. Med. Biol., Vol. 52, 4205-4210, 2007.
doi:10.1088/0031-9155/52/14/012

18. CTIA Certification Department Program "Test plan for mobile station over the air performance V method of measurement for radiated RF power and receiver performance,", [Online]. Available: www.ctia.org.