Vol. 62
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-19
An Original Method for the Measurement of the Radiated Susceptibility of an Electronic System Using Induced Electromagnetic Nonlinear Effects
By
Progress In Electromagnetics Research Letters, Vol. 62, 83-89, 2016
Abstract
The objective of this paper is to propose an improved approach based on a novel non-intrusive method for easily assessing the high frequency CW EM radiated susceptibility of an electronic system by characterizing its nonlinear electromagnetic effects. For this purpose, we have developed a specific harmonic frequency detection system coupled with a mode stirrer reverberating chamber. We describe the principles of the method and study a generic device board which is representative of a real electronic system. We evaluate the EM susceptibility of a micro controller in full functional mode and the data exchanges with two types of external 8 Mb SRAM memories. We observe the EM radiated susceptibility of this device by a functional EMC analysis method; then we measure the harmonic frequency content and make a correlation with the EM susceptibility results. We obtain significant differences between the two memory devices, as a consequence of their different managements of internal voltage over stress. We are well aware that this method is currently not validated in industrial environments EMC. In this paper, we only want to show that the appearance of the highest harmonic level occurs only when DUT has the highest functional failure.
Citation
Laurent Guibert, Patrick Millot, Xavier Ferrieres, and Etienne Sicard, "An Original Method for the Measurement of the Radiated Susceptibility of an Electronic System Using Induced Electromagnetic Nonlinear Effects," Progress In Electromagnetics Research Letters, Vol. 62, 83-89, 2016.
doi:10.2528/PIERL14082601
References

1. "Environmental conditions and test procedures for airborne equipment,", RTCA DO-160F, Dec. 6, 2007.

2. "Testing and measurement techniques, reverberation chamber test methods,", International Standard IEC 61000-4-21, 2011.

3. Chen, J., A. C. Marvin, I. D. Flintoft, and J. F. Dawson, "A statistical approach to radiated immunity testing of digital hardware in a reverberation chamber," EMC Europe 2010, Department of Electronics University of York, Heslington, York, UK, YO10 5DD, 2010.

4. Marvin, A. C., J. Chen, I. D. Flintoft, and J. F. Dawson, "A describing function method for evaluating the statistics of harmonics scattered from a non-linear device in a reverberation chamber," 2009 IEEE International Symposium on Electromagnetic Compatibility, 165-170, Austin, Aug. 17-21, 2009.

5. Gretsch, W. R., "The spectrum of intermodulation generated in a semiconductor diode junction," IEEE, Vol. 54, Nov. 1966.

6. Guibert, L. and J. P. Parmantier, "EMC study of an embedded electronic system placed in a hostile electromagnetic environment," EMC Compo’09, 78, Nov. 17-19, 2009.
doi:10.1109/LAWP.2008.2004512

7. Guibert, L., P. Millot, X. Ferrieres, and E. Sicard, "Study of radiated immunity of an electronic system in a reverberating chamber," 2013 9th International Workshop Electromagnet Compatibility of Integrated Circuits (EMC Compo), 2013.

8. Psychoudakis, D., W. Moulder, C.-C. Chen, H. Zhu, and J. L. Volakis, "A portable low-power harmonic radar system and conformal tag for insect tracking," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 444-447, 2008.