Vol. 53
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-05-31
A Low-Complexity Dual-Band Model for Dual-Band Power Amplifiers Based on Volterra Series
By
Progress In Electromagnetics Research Letters, Vol. 53, 101-106, 2015
Abstract
A novel low-complexity dual-band digital predistortion (2D-LCMP) model for linearization of dual-band power amplifiers (PAs) is proposed in this paper. The in-band intermodulation (IM) and cross-band modulation (CM) distortion terms in the prior two-dimensional models have different impacts on the model performance. Therefore, they are considered respectively in the proposed model. Some redundant distortion terms are removed away to decrease the model complexity. In addition, the nonlinearity order and memory depth are frequency dependent for each band. Experimental measurements were performed on two types of wideband PAs. The results prove the superiority of the 2D-LCMP model.
Citation
Tianjing Zhang, Cuiping Yu, Yuan'an Liu, Shulan Li, and Bihua Tang, "A Low-Complexity Dual-Band Model for Dual-Band Power Amplifiers Based on Volterra Series," Progress In Electromagnetics Research Letters, Vol. 53, 101-106, 2015.
doi:10.2528/PIERL15042704
References

1. Eun, C. and E. J. Powers, "A new Volterra predistorter based on the indirect learning architecture," IEEE Trans. Signal Process., Vol. 45, No. 1, 223-227, Jan. 1997.
doi:10.1109/78.552219

2. Zhu, A., M. Wren, and T. J. Brazil, "An efficient Volterra-based behavioral model for wideband RF power amplifiers," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 787-790, 2003.

3. Ding, L., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials," IEEE Trans. Commun., Vol. 52, No. 1, 159-165, Jan. 2004.
doi:10.1109/TCOMM.2003.822188

4. Morgan, D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, Oct. 2006.
doi:10.1109/TSP.2006.879264

5. Crespo-Cadenas, C., J. Reina-Tosina, and M. J. Madero-Ayora, "Volterra behavioral model for wideband RF amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 3, 449-457, Mar. 2007.
doi:10.1109/TMTT.2006.890514

6. Hammi, O., F. M. Ghannouchi, and B. Vassilakis, "A compact envelope-memory polynomial for RF transmitters modeling with application to baseband and RF-digital predistortion," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 5, 359-361, May 2008.
doi:10.1109/LMWC.2008.922132

7. Cadenas, C. C., J. R. Tosina, M. M. Ayora, and J. M. Cruzado, "A new approach to pruning Volterra models for power amplifiers," IEEE Trans. Signal Process., Vol. 58, No. 4, 2113-2120, Apr. 2010.
doi:10.1109/TSP.2009.2039815

8. Rawat, M., F. M. Ghannouchi, and K. Rawat, "Three-layered biased memory polynomial for dynamic modeling and predistortion of transmitters with memory," IEEE Trans. Circuits Syst. I. Reg. Papers, Vol. 6, No. 3, 768-777, Mar. 2013.
doi:10.1109/TCSI.2012.2215740

9. Liu, Y.-J., J. Zhou, W. Chen, and B.-H. Zhou, "A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers," IEEE Trans. Ind. Electron., Vol. 61, No. 5, 2389-2401, May 2014.
doi:10.1109/TIE.2013.2270217

10. Bassam, S. A., M. Helaoui, and F. M. Ghannouchi, "2-D digital predistortion (2-D-DPD) architecture for concurrent dual band transmitters," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 10, 2547-2553, Oct. 2011.
doi:10.1109/TMTT.2011.2163802

11. Liu, Y. J., J. Zhou, W. Chen, B. Zhou, and F. M. Ghannouchi, "Low-complexity 2D behavioral model for concurrent dual-band power amplifiers," IEEE Elect. Lett., Vol. 48, No. 11, 620-621, May 2012.
doi:10.1049/el.2012.1183

12. Liu, Y. J., W. Chen, J. Zhou, B. Zhou, and F. M. Ghannouchi, "Digital predistortion for concurrent dual-band transmitters using 2-D modified memory polynomials," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 281-290, Jan. 2013.
doi:10.1109/TMTT.2012.2228216

13. Cabarkapa, M., N. Neskovic, and D. Budimir, "A generalized 2-D linearity enhancement architecture for concurrent dual-band wireless transmitters," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 12, 4579-4590, Dec. 2013.
doi:10.1109/TMTT.2013.2287679

14. Xiang, H., C. Yu, J. Gao, S. Li, and Y. Wu, "Dynamic deviation reduction based concurrent dual-band digital predistortion," IEEE Int. J. RF Microw. Comp. Aid Eng., Vol. 24, No. 3, 401-411, Aug. 2013.
doi:10.1002/mmce.20773