Vol. 58
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-01-29
A New Method for Designing Low RCS Patch Antenna Using Frequency Selective Surface
By
Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016
Abstract
A new method for reducing the in-band radar cross-section (RCS) of a patch antenna within its operating frequency is presented. This method is based on the utilization of band-pass frequency selective surface (FSS) consisting of non-resonant constituting elements. The main novelty of this method is that it allows for the use of an FSS structure to reducing the in-band RCS of antennas. To validate the proposed method, a low RCS patch antenna resonating at 5 GHz is designed using this method. The simulated results show that the largest RCS reduction is about 15 dB at 5 GHz. A prototype of the proposed antenna is fabricated and tested in an anechoic chamber, and good agreements between the measured and simulated results are demonstrated.
Citation
Jun Zheng, and Shao-Jun Fang, "A New Method for Designing Low RCS Patch Antenna Using Frequency Selective Surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702
References

1. Jenn, D. C., "Radar and laser cross section engineering,", American Institute of Aeronautics and Astronautics, 2005.
doi:10.1049/sbra026e

2. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Pub., Raleigh, NC, USA, 2004.
doi:10.1002/0471723770

3. Munk, B. A., Frequency Selective Surface, Theory and Design, Wiley, New York, NY, USA, 2000.

4. Munk, B. A., Finite Antenna Arrays and FSS, John Wiley and Sons, Inc., 2005.
doi:10.1109/TAP.2012.2189701

5. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surface," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2327-2335, 2012.
doi:10.1163/156939309789476473

6. Wang, W.-T., S.-X. Gong, X. Wang, H.-W. Yuan, J. Ling, and T.-T. Wan, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1505-1514, 2009.
doi:10.1049/el:20051239

7. Gao, Q., Y. Yin, D.-B. Yan, and N.-C. Yuan, "Application of metamaterials to ultra-thin radar absorbing materials design," Electron. Lett., Vol. 41, No. 17, 936-937, 2005.

8. Li, Y., H. Zhang, Y. Fu, and N. Yuan, "RCS reduction of ridged wave-guide slot antenna array using EBG radar absorbing material," IEEE Antennas Wireless Propag. Lett., Vol. 7, 473-476, 2008.
doi:10.1109/TAP.2013.2287888

9. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slot antennas arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 163-173, 2014.

10. Xu, H. Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.
doi:10.2528/PIERL12112011

11. Jia, Y., Y. Liu, S.-X. Gong, T. Hong, and D. Yu, "Printed UWB end-fire Vivaldi antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013.
doi:10.1109/TAP.2014.2313855

12. Dikmen, C. M., S. Cimen, and G. Cakir, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2946-2953, 2014.
doi:10.1002/mop.22440

13. He, W., R. Jin, J. Geng, and G. Yang, "2 × 2 array with UC-EBG ground for low RCS and high gain," Microw. Opt. Technol. Lett., Vol. 49, No. 6, 1418-1422, 2007.
doi:10.1109/LAWP.2012.2215832

14. Zhang, J., J. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1048-1051, 2012.
doi:10.1109/TAP.2004.840528

15. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surface and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2008.2005538

16. Weily, A. R., T. S. Brid, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3382-3390, 2008.

17. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile band-pass frequency selective surface with non-resonant constituting elements," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 2946-2953, 2010.

18. Liu, Y. and X. Zhao, "Perfect absorber metamaterial for designing low-RCS patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1473-1476, 2014.
doi:10.1109/LAWP.2014.2357017

19. Xu, W., J. Wang, M. Chen, Z. Zhang, and Z. Li, "A novel microstrip antenna with composite patch structure for reduction of in-band RCS," IEEE Antennas Wireless Propag. Lett., Vol. 14, 139-142, 2015.

20. Krishnamoorthy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low RCS and polarization reconfigurable antenna using cross slot based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.