Vol. 62
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-15
Accurate Extraction of High Quality Factor of Dielectric Resonators from Measurements
By
Progress In Electromagnetics Research Letters, Vol. 62, 77-82, 2016
Abstract
We present a revised Cauchy method to accurately extract the high quality factor of dielectric resonators from measurements. Since the losses displace all the zeros and poles of the transfer function horizontally to the left in the complex plane, the accurate evaluation of the unloaded quality factor of microwave resonators can be achieved based on the complex frequency transformation. The results show that if the three-point method is employed, the accuracy of the quality factor values deteriorates when the input/output coupling is strong. Nevertheless, a nearly constant factor value can be obtained by our proposed technique whether the input/output couplings are weak or strong. This algorithm provides an alternative method to measure the unloaded quality factor when the signal-to-noise ratio is high.
Citation
Dajun Lei, Feng Qiu, Jinggui Zhang, Hui Dong, Zhenhua Tang, Jian-Quan Huang, Ming Yao, and Qing-Xin Chu, "Accurate Extraction of High Quality Factor of Dielectric Resonators from Measurements," Progress In Electromagnetics Research Letters, Vol. 62, 77-82, 2016.
doi:10.2528/PIERL16061506
References

1. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, New York, 2005.

2. Chua, L. H. and D. Mirshekar-Syahkal, "Accurate and direct characterization of high-Q microwave resonators using one-port measurement," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 978-985, 2003.
doi:10.1109/TMTT.2003.808711

3. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, Wiley, New York, 2007.

4. Wang, P., L. H. Chua, and D. Mirshekar-Syahkal, "Accurate characterization of low-Q microwave resonator using critical-points method," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 349-353, 2005.
doi:10.1109/TMTT.2004.839931

5. Kwok, R. S. and J. F. Liang, "Characterization of high-Q resonators for microwave-filter applications," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 1, 111-114, 1999.
doi:10.1109/22.740093

6. Leong, K. and J. Mazierska, "Precise measurements of the Q factor of dielectric resonators in the transmission mode --- Accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2115-2127, 2002.
doi:10.1109/TMTT.2002.802324

7. Wang, R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.
doi:10.2528/PIER11072804

8. Garcia-Lamperez, A., T. K. Sarkar, and M. S. Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 490-492, 2004.
doi:10.1109/LMWC.2004.834576

9. Garcia-Lamperez, A., S. Llorente-Romano, M. Salazar-Palma, and T. K. Sarkar, "Efficient electromagnetic optimization of microwave filters and multiplexers using rational models," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 508-521, 2004.
doi:10.1109/TMTT.2003.822021

10. Macchiarella, G., "Extraction of unloaded and coupling matrix from measurement on filters with large losses," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 307-309, Jun. 2010.
doi:10.1109/LMWC.2010.2047455

11. Adve, R. S., T. K. Sarkar, S. M. Rao, E. K. Miller, and D. R. Pflug, "Application of the Cauchy method for extrapolating/interpolating narrow-band system responses," IEEE Trans. Microw. Theory Tech., Vol. 45, 837-845, May 1997.
doi:10.1109/22.575608

12. Wang, R. and J. Xu, "Extracting coupling matrix and unloaded Q from scattering parameters of lossy filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011.
doi:10.2528/PIER11021604

13. Chu, Q.-X., X. Ouyang, H. Wang, and F.-C. Chen, "TE01σ-mode dielectric-resonator filters with controllable transmission zeros," IEEE Trans. Microw. Theory. Tech., Vol. 61, 1086-1094, 2013.
doi:10.1109/TMTT.2013.2238551