Vol. 63
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-11-11
Influence of Salt Spray Environment on the Transmission Characteristics of the Dual Left-Handed Material
By
Progress In Electromagnetics Research Letters, Vol. 63, 129-134, 2016
Abstract
In order to collect information for the manufacture and application of a designed dual left-handed material (LHM) structure, the influence of salt spray test on the two conductive composite coatings consisting of silver and copper is contrastively investigated. It is found that the salt spray corrosion test can influence the microstructure of the coated copper and silver layers, leading to the decrease of electrical conductivity of the coated copper and silver layers. As results, the transmission performance of the dual-LHM structure is reduced, while the bandwidth of the dual-LHM structure is broadened. Moreover, at the same conditions, the salt spray corrosion test has less influence on the transmission characteristics of the silver-plated dual-LHM structure than those of copper-plated dual-LHM structure.
Citation
Naiyue Huang, Nong Jin, and Xing-Fang Luo, "Influence of Salt Spray Environment on the Transmission Characteristics of the Dual Left-Handed Material," Progress In Electromagnetics Research Letters, Vol. 63, 129-134, 2016.
doi:10.2528/PIERL16072906
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith, D. R., W. J. Padilla, D. C. Vier, et al. "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Eleftherades, G. V., "A generalized negative-refractive-index transmission-line (NRI-TL) metamaterial for dual-band and quad-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 17, 415-417, 2007.
doi:10.1109/LMWC.2007.897786

5. Eleftherades, G. V. and O. F. Siddiqui, "Negative refraction and focusing in hyperbolic transmission-line periodic grids," IEEE Trans. on Microwave Theory and Tech., Vol. 53, 369-603, 2005.

6. Eleftherades, G. V., M. A. Antoniades, and F. Qureshi, "Antenna applications of negative-refractive-index transmission-line structures," IET Microw. Antennas and Propagat., Vol. 1, 12-22, 2007.
doi:10.1049/iet-map:20050345

7. Jie, M. A., "Application study of corrosion detection used in the result judgment of salt spray corrosion test," New Technology and New Process, Vol. 8, 98-100, 2010.

8. Sanz, V., A. Belenguer, L. Martinez, et al. "Balanced right/left-handed coplanar waveguide with stub-loaded split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 193-196, 2014.
doi:10.1109/LAWP.2014.2301017

9. Falcone, F., T. Lopetegi, J. D. Baena, et al. "Effective negative-ε stop-band microstrip lines based on complementary split-ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

10. Ahn, D., J. S. Park, C. S. Kim, et al. "A design of the low-pass filter using the novel using the novel microstrip defected ground structure," IEEE Trans. on Microwave Theory and Tech., Vol. 49, 86-93, 2001.
doi:10.1109/22.899965

11. Ripin, N., S. N. Yusoff, A. A. Sulaiman, et al. "Enhancement of bandwidth through I-shaped defected ground structure," IEEE International RF and Microwave Conference (RFM), 477-481, Penang, 2013.
doi:10.1109/RFM.2013.6757310

12. Brooks, C. R. and B. L. Mcgill, "The application of scanning electron microscopy to fractography," Materials Characterization, Vol. 33, 195-243, 1994.
doi:10.1016/1044-5803(94)90045-0