Vol. 63
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-29
A 2-4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency
By
Progress In Electromagnetics Research Letters, Vol. 63, 7-14, 2016
Abstract
In this paper, a broadband power amplifier with high efficiency and output power based on GaN HEMT is presented. The design of broadband matching network and transistor package modeling is presented, and a simulation strategy is proposed to increase the simulation accuracy. According to measured results, the PA module shows a linear gain of 10~13 dB during 1.9-4 GHz. The efficiency can reach 74.5%, and the maximum output power reaches 33.2 Watt. For a 5-MHz WCDMA signal, the designed power amplifier achieves an average output power above 20 W when ACLR = -30 dBc over the entire working band.
Citation
Hao Guo, Chun-Qing Chen, Hao-Quan Wang, and Ming-Li Hao, "A 2-4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency," Progress In Electromagnetics Research Letters, Vol. 63, 7-14, 2016.
doi:10.2528/PIERL16081801
References

1. Raab, F. H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, 814-826, 2002.
doi:10.1109/22.989965

2. Saphiro, E., J. Xu, A. Naga, F. Williams, U. Mishra, and R. York, "A high efficiency traveling-wave power amplifier topology using improved power-combining technique," IEEE Microw. Guided Wave Lett., Vol. 8, No. 3, 133-135, Mar. 1998.
doi:10.1109/75.661139

3. Gassmann, J., P. Watson, L. Kehias, and G. Henry, "Wideband, high-efficiency GaN power amplifiers utilizing a non-uniform distributed topology," IEEE MTT-S Int. Microw. Symp. Dig., 615-618, Jun. 2007.

4. Kim, B. and H. Q. Tserng, "0.5 W 2-21 GHz monolithic GaAs distributed amplifier," Electronics Letters, Vol. 20, 288-289, Mar. 1984.
doi:10.1049/el:19840197

5. Chen, K. and D. Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3162-3173, Dec. 2011.
doi:10.1109/TMTT.2011.2169080

6. Carrubba, V., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth," IEEE MTT-S Int. Micro. Symp. Dig., 1-4, 2011.

7. Chen, K. and D. Peroulis, "Design of broadband high-efficiency power amplifier using in-band class-F^(-1)/F mode transferring technique," IEEE MTT-S Int. Microw. Symp. Digest, 17-22, Montreal, QC, Canada, Jun. 2012.

8. Wright, P., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3196-3204, 2009.
doi:10.1109/TMTT.2009.2033295

9. Igi, S., M. Kobiki, T. Sakayori, M. Ohashi, M. Wataze, T. Suzuki, and K. Kusunoki, "Internally matched (IM) plated source bridge (PSB) power GaAs FET achieving a high performance power amplifier in X-band," IEEE MTT-S Int. Micro. Symp. Dig., 153-155, 1982.
doi:10.1109/MWSYM.1982.1130644

10. Aaen, P. A., J. A. Pla, and C. A. Balanis, "Modeling techniques suitable for CAD-based design of internal matching networks of high-power RF/microwave transistors," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 7, 3052-3059, Jul. 2006.
doi:10.1109/TMTT.2006.877033

11. Aaen, P. H., J. A. Pla, and C. A. Balanis, "On the development of CAD techniques suitable for the design of high-power RF transistors," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 10, 3067-3074, Oct. 2005.
doi:10.1109/TMTT.2005.855129

12. Schnieder, F., O. Bengtsson, F.-J. Schmuckle, M. Rudolph, and W. Heinrich, "Simulation of RF power distribution in a packaged GaN power transistor using an electro-thermal large-signal description," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2603-2609, 2013.
doi:10.1109/TMTT.2013.2261089

13. Flucke, J., F.-J. Schmuckle, W. Heinrich, and M. Rudolph, "An accurate package model for 60 W GaN power transistors," Eur. Microw. Integr. Circuits Conf., 152-155, 2009.

14. Dawson, D., "Closed-form solutions for the design of optimum matching networks," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 121-129, Jan. 2009.
doi:10.1109/TMTT.2008.2009041

15. Rhea, R. W., HF Filter Design and Computer Simulation, Noble, New York, 1994.

16. Saad, P., C. Fager, H. Cao, et al. "Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 7, 1677-1685, 2010.
doi:10.1109/TMTT.2010.2049770

17. Canning, T., P. J. Tasker, and S. C. Cripps, "Continuous mode power amplifier design using harmonic clipping contours: Theory and practice," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 100-110, 2014.
doi:10.1109/TMTT.2013.2292675

18. Dai, Z., S. He, F. You, et al. "A new distributed parameter broadband matching method for power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 2, 449-458, 2015.
doi:10.1109/TMTT.2014.2385087