Vol. 65
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-18
Gain Enhancement of Slot Antenna Using Grooved Structure and FSS Layer
By
Progress In Electromagnetics Research Letters, Vol. 65, 1-7, 2017
Abstract
This letter presents a high gain slot antenna for K-band non-contact measurement systems. The proposed antenna consists of a slot antenna on a grooved metal structure with a single frequency selective surface. In addition to a high-gain characteristic, a reduced size is strongly required for easy embedding. These features are the main objectives of this antenna design. To achieve these two objectives, an optimization procedure, based on a global algorithm, is used. Both simulation and optimization are carried out by means a full-wave electromagnetic simulation tool. Eventually, to validate the proposed design, a prototype of the antenna has been manufactured and tested. More than 15 dB of gain is measured over the operating frequency range, while optimal gain can reach 17 dB at frequency 25.5 GHz. These characteristics make this antenna very suitable for non-contact measurement i.e. radar systems.
Citation
Bilal El Jaafari, and Jean-Marie Floc'h, "Gain Enhancement of Slot Antenna Using Grooved Structure and FSS Layer," Progress In Electromagnetics Research Letters, Vol. 65, 1-7, 2017.
doi:10.2528/PIERL16102507
References

1. Skolnik, M., "Role of radar in microwaves," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 625-632, Mar. 2002.
doi:10.1109/22.989947

2. Nanzer, J., Microwave and Millimeter-wave Remote Sensing for Security Applications, House Remote Sensing Library, Artech House, 2012.

3. El Jaafari, B. and J.-M. Floch, "Low-profile wideband monopole antenna for mobile and wireless monitoring applications," Microwave and Optical Technology Letters, Vol. 58, No. 8, 1813-1817, 2016.
doi:10.1002/mop.29916

4. Du Preez, J. and S. Sinha, Millimeter-Wave Antennas: Configurations and Applications, Springer, 2016.
doi:10.1007/978-3-319-35068-4

5. Alsath, M. G. N., L. Lawrance, and M. Kanagasabai, "Bandwidth-enhanced grid array antenna for UWB automotive radar sensors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5215-5219, Nov. 2015.
doi:10.1109/TAP.2015.2478143

6. Wirth, W. D., "Radar techniques using array antennas," Electromagnetics and Radar Series, Institution of Engineering and Technology, 2013.

7. Rabinovich, V. and N. Alexandrov, Antenna Arrays and Automotive Applications, SpringerLink, Bucher, New York, 2012.

8. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702

9. Edalati, A. and T. A. Denidni, "High-gain reconfigurable sectoral antenna using an active cylindrical FSS structure," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2464-2472, Jul. 2011.
doi:10.1109/TAP.2011.2152327

10. Feresidis, P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

11. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Broadband sub-wavelength profile high-gain antennas based on multi-layer metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 423-427, Jan. 2015.
doi:10.1109/TAP.2014.2365825

12. Sutinjo, A. and M. Okoniewski, "A simple leaky-wave analysis of 1-d grooved metal structure for enhanced microwave radiation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2719-2726, Jun. 2012.
doi:10.1109/TAP.2012.2194655

13. Huang, C., Z. Zhao, Q. Feng, and X. Luo, "A high-gain antenna consisting of two slot elements with a space larger than a wavelength," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 159-162, 2010.
doi:10.1109/LAWP.2010.2044863

14. Huang, C., Z. Zhao, Q. Feng, C. Wang, and X. Luo, "Grooves-assisted surface wave modulation in two-slot array for mutual coupling reduction and gain enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 912-915, 2009.
doi:10.1109/LAWP.2009.2028587

15. Diaz, M. B., et al. "Dual-band low-profile corrugated feeder antenna," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 340-350, Feb. 2006.
doi:10.1109/TAP.2005.863380

16. Bird, T. S., Fundamentals of Aperture Antennas and Arrays, John Wiley & Sons, Ltd., 2016.

17. Alsath, M. G. N., L. Lawrance, and M. Kanagasabai, "Bandwidth-enhanced grid array antenna for UWB automotive radar sensors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5215-5219, Nov. 2015.
doi:10.1109/TAP.2015.2478143

18. Yang, W., K. Ma, K. S. Yeo, and W. M. Lim, "A compact high-performance patch antenna array for 60-GHz applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 313-316, 2016.
doi:10.1109/LAWP.2015.2443054