Vol. 69
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-07-05
Butter Fly Shape Compact Microstrip Antenna for Wideband Applications
By
Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017
Abstract
In this article, a novel design of butterfly-shaped compact and small size microstrip antenna is proposed. The radiating structure consists of four circular discs in coalesced form and fed with coaxial probe. The initial antenna resonates at 9.64 GHz with impedance bandwidth of 11.41%. The resonance frequency is further reduced to 8.12 GHz with bandwidth 10.10%, when a rectangular slot is incorporated in the initial patch. Finally, two parallel slots are embedded in the initial patch which improves the antenna bandwidth up to 21.50% (6.02-7.47 GHz). The gain and efficiency of this antenna are above 8.80 dBi and 90% respectively across the entire operating band. Radiation pattern is calculated at lower end (6.02 GHz), upper end (7.47 GHz) and centre frequency (6.75 GHz) of operating band. The proposed antenna is fabricated, and measured results are validated with the simulated ones.
Citation
Rakesh Nath Tiwari, Prabhakar Singh, and Binod Kanaujia, "Butter Fly Shape Compact Microstrip Antenna for Wideband Applications," Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017.
doi:10.2528/PIERL17042703
References

1. Shackelford, A. K., K.-F. Lee, and K. M. Luk, "Design of small-size wide-bandwidth microstrip-patch antennas," IEEE Antennas and Propag. Magazine, Vol. 45, No. 1, 75-83, 2003.
doi:10.1109/MAP.2003.1189652

2. Xiong, J., Z. Ying, and S. He, "A broadband low profile patch antenna of compact size with three resonators," IEEE Trans. Antennas Propag. Magazine, Vol. 57, No. 6, 1838-1843, 2009.
doi:10.1109/TAP.2009.2016792

3. Pandey, G. P., B. K. Kanaujia, A. K. Gautam, and S. K. Gupta, "Ultra-wideband L-strip proximity coupled slot loaded circular microstrip antenna for modern communication systems," Wireless Personal Communication, Vol. 70, No. 1, 139-151, 2013.
doi:10.1007/s11277-012-0684-5

4. Deshmukh, A. A. and K. P. Ray, "Broadband proximity-fed square-ring microstrip antennas," IEEE Antennas Propag. Magazine,, Vol. 56, No. 2, 89-107, 2014.
doi:10.1109/MAP.2014.6837068

5. Chen, H.-D., "Broadband designs of coplanar capacitively-fed shorted patch antennas," IET Microwave Antennas Propagation, Vol. 2, No. 6, 574-579, 2008.
doi:10.1049/iet-map:20070312

6. Wi, S.-H., Y.-S. Lee, and J.-G. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1196-1199, 2007.
doi:10.1109/TAP.2007.893427

7. Khodaei, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB07112201

8. Neyestanak, A. A. L., F. H. Kashni, and K. Barkeshli, "W-shaped enhanced-bandwidth patch antenna for wireless communications," Wireless Personal Communication, Vol. 43, No. 4, 1257-1265, 2007.
doi:10.1007/s11277-007-9299-7

9. Ansari, J. A., P. Singh, S. K. Dubey, R. U. Khan, and B. R. Vishvakarma, "Analysis of stacked V-slot loaded patch antenna for wideband application," Microwave Optical Technology Letter, Vol. 51, No. 2, 324-330, 2009.
doi:10.1002/mop.24031

10. Xie, J.-J., Y.-Z. Yin, S.-L. Pan, and L. Sun, "A novel circular slot antenna with two pairs of t-shaped slots for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 32, 49-57, 2012.
doi:10.2528/PIERL12040606

11. Krishna, D. D., M. Gopikrihna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Compact wideband koch fractal printed slot antenna," IET Microwave Antennas Propag., Vol. 3, No. 5, 782-789, 2009.
doi:10.1049/iet-map.2008.0210

12. Sung, Y. J., "Bandwidth enhancement of a wide slot using fractal-shaped sierpinski," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 3076-3079, 2011.
doi:10.1109/TAP.2011.2158942

13. Malekpoor, H. and S. Jam, "Miniaturised asymmetric E-shaped microstrip patch antenna with folded-patch feed," IET Microwave Antennas Propag., Vol. 7, No. 2, 85-91, 2013.
doi:10.1049/iet-map.2012.0266

14. Sun, D. and L. You, "A broadband impedance matching method for proximity-coupled microstrip antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1392-1397, 2010.
doi:10.1109/TAP.2010.2041312

15. Matin, M. A., B. S. Sharif, and C. C. Tsimenidis, "Probe fed stacked patch antenna for wideband applications," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2385-2388, 2007.
doi:10.1109/TAP.2007.901924

16. Ang, B. K. and B. K. Chung, "A wideband E-shaped microstrip patch antenna for 5-6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

17. Islam, M. T., "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research, Vol. 95, 397-407, 2009.
doi:10.2528/PIER09080204

18. Ansari, J. A., P. Singh, and N. P. Yadav, "Analysis of shorting pin loaded half disk patch antenna for wideband operation," Progress In Electromagnetic Research C, Vol. 6, 179-192, 2009.
doi:10.2528/PIERC09011203

19. Zarrabi, F. B., R. Ahmadian, M. Rahimi, and Z. Mansouri, "Dual band antenna designing with composite right/left handed," Microwave Optical Technology Letter, Vol. 57, No. 4, 774-779, 2015.
doi:10.1002/mop.28960