Vol. 69
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-21
A Outstanding Miniaturized Frequency Selective Surface Based on Convoluted Interwoven Element
By
Progress In Electromagnetics Research Letters, Vol. 69, 133-139, 2017
Abstract
Based on convoluted interwoven element, a miniaturized frequency selective surface (FSS) with stable band-stop response is proposed in the paper. By extending the four dipoles into the adjacent elements, the equivalent inductance and capacitance are increased, and therefore the proposed FSS realizes promising miniaturization characteristics. The simulation results indicate that the resonant frequency is 1.19GHz, and the dimension is only 0.027λ0. Compared to traditional crossed elements, the size is reduced by 94.6%. Besides, the FSS has excellent angle-stability under both TE and TM waves. Finally, the proposed FSS is fabricated and measured, and the experiment results prove the satisfactory consistency with the simulation results.
Citation
Weiyang Yin, Hou Zhang, Tao Zhong, and Qiang Chen, "A Outstanding Miniaturized Frequency Selective Surface Based on Convoluted Interwoven Element," Progress In Electromagnetics Research Letters, Vol. 69, 133-139, 2017.
doi:10.2528/PIERL17060705
References

1. Ben, A. M., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.

2. Yan, M. B., S. B. Qu, J. F. Wang, et al. "A novel miniaturized frequency selective surface with stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 639-641, 2014.
doi:10.1109/LAWP.2014.2348564

3. Saptarshi, G., S. Vaibhav, et al. "An angularly stable dual band FSS with closely spaced resonances using miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 27, 218-220, 2017.
doi:10.1109/LMWC.2017.2661683

4. Rajesh, N., K. Malathi, B. Sanjay, et al. "A compact frequency selective surface with stable response for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 718-720, 2013.
doi:10.1109/LAWP.2013.2264837

5. Zhao, P. C. and Z. Y. Zong, "A convoluted structure for miniaturized frequency selective surface and its equivalent circuit for optimization design," IEEE Transactions on Antennas and Propagation, Vol. 64, 2963-2970, 2016.
doi:10.1109/TAP.2016.2565694

6. Yang, H. Y. and S. X. Gong, "A novel miniaturized selective surface with excellent center frequency stability," Microwave and Optical Technology Letters, Vol. 51, 2513-2516, 2009.
doi:10.1002/mop.24604

7. Shi, Y. R., W. C. Tang, W. Zhuang, et al. "Miniaturised frequency selective surfacebased on 2.5-dimensional closed loop," Electronics Letters, Vol. 50, 1656-1658, 2014.
doi:10.1049/el.2014.3113

8. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Prograss In Electromagnetic Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

9. Chen, X. H. and H. Y. Zhang, "The present research state of the frequency selective surface," Material Report A: Review, Vol. 62, 52-55, 2013.

10. Deng, F., "An innovative design scheme of the miniaturized frequency selective surface," Chinese Journal of Ship Research, Vol. 8, 85-88, 2013.

11. Li, Y. Y. and W. L. Chen, "Dual-polarized multiband frequency selective surface with miniaturized Hilbert element," IEEE Microwave and Optical Technology Letters, Vol. 5, 1221-1223, 2012.

12. Jiang, W., T. Hong, et al. "Miniaturized frequency selective surface with a bionical structure," Microwave and Optical Technology Letters, Vol. 55, 335-337, 2013.
doi:10.1002/mop.27329

13. Lei, H., J. Deng, and Z. Y. Zhao, "A novel frequency selective surface with dual layer and smaller size," Journal of Microwaves, Vol. 6, 185-188, 2014.

14. Hussain, T. and S. C Qun, "Miniaturization of frequency selective surfaces using 2.5 dimensional knitted structures: Design and synthesis," IEEE Transaction on Antennas and Propagation, Vol. 65, 2405-2412, 2017.
doi:10.1109/TAP.2017.2673809

15. Wu, X., Z. B. Pei, S. B. Qu, et al. "The design of dual stop-band miniaturized frequency selective surface," Journal of Air Force Engineering University (Natural Science Edition), Vol. 12, 86-89, 2011.