Vol. 75
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-16
Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides
By
Progress In Electromagnetics Research Letters, Vol. 75, 47-52, 2018
Abstract
Based on the multi-mode interference effect in the periodic dielectric waveguide, a novel waveguide crossing structure is proposed and analyzed. The structure can achieve crossing connection of three periodic dielectric waveguides at the same position with low crosstalk and relative high transmission coefficient. Based on electromagnetic numerical simulation methods, the proposed crossing structure of three periodic dielectric waveguides is calculated and analyzed in details, and at the optical communication wavelengths near 1.55 μm, crosstalks below 22 dB between the three crossing periodic dielectric waveguides are achieved.
Citation
Haibin Chen, Zhongjiao He, and Wei Wang, "Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides," Progress In Electromagnetics Research Letters, Vol. 75, 47-52, 2018.
doi:10.2528/PIERL18012902
References

1. Miller, S. E., "Integrated optics: An introduction," Bell Labs Technical Journal, Vol. 48, No. 7, 2059-2069, 1969.
doi:10.1002/j.1538-7305.1969.tb01165.x

2. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1983.

3. Fan, S., J. N.Winn, A. Devenyi, et al. "Guided and defect modes in periodic dielectric waveguides," Journal of the Optical Society of America B, Vol. 12, No. 7, 1267-1272, 1995.
doi:10.1364/JOSAB.12.001267

4. Chang, K. D. and P. G. Luan, "Periodic dielectric waveguide beam splitter based on co-directional coupling," Optics Express, Vol. 15, No. 8, 4536-4545, 2007.
doi:10.1364/OE.15.004536

5. Huang, W. W., Y. Zhang, and B. J. Li, "Ultra compact wavelength and polarization splitters in periodic dielectric waveguides," Optics Express, Vol. 16, No. 3, 1600-1609, 2008.
doi:10.1364/OE.16.001600

6. Yi, H. X. and Z. P. Zhou, "Nanotaper mode converter based on silicon pillar waveguide," Chinese Optics Letters, Vol. 7, No. 4, 312-314, 2009.
doi:10.3788/COL20090704.0312

7. Zhang, Y., H. X. Lei, and B. J. Li, "Polarization beam splitter with wide bandwidth in air-holebased periodic dielectric waveguides," Optics Communications, Vol. 283, No. 10, 2140-2145, 2010.
doi:10.1016/j.optcom.2010.01.043

8. Zeng, S. Q., Y. Zhang, B. J. Li, et al. "Ultrasmall optical logic gates based on silicon periodic dielectric waveguides," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 8, No. 1, 32-37, 2010.
doi:10.1016/j.photonics.2010.01.002

9. Zhang, W., J. Liu, W. P. Huang, et al. "Giant birefringence of periodic dielectric waveguides," IEEE Photonics Journal, Vol. 3, No. 3, 512-520, 2011.
doi:10.1109/JPHOT.2011.2154319

10. Huang, L., B. Chen, Y. D. Li, et al. "Compact 1×4 wavelength demultiplexer based on directional coupling of periodic dielectric waveguides," Applied Optics, Vol. 51, No. 17, 3950-3956, 2012.
doi:10.1364/AO.51.003950

11. Chen, H. B., G. H. Wang, H. L. Hou, et al. "Novel periodic dielectric ring waveguide and design of compact dual wavelength demultiplexer," Chinese Optics Letters, Vol. 12, No. 7, 28-32, 2014.

12. Luan, P. G. and K. D. Chang, "Transmission characteristics of finite periodic dielectric waveguides," Optics Express, Vol. 14, No. 8, 3263-3272, 2006.
doi:10.1364/OE.14.003263

13. Feng, J. B., Q. Q. Li, and S. S. Fan, "Compact and low cross-talk silicon-on-insulator crossing using periodic dielectric waveguide," Optics Letters, Vol. 35, No. 23, 3904-3906, 2010.
doi:10.1364/OL.35.003904

14. Guo, H. T., Y. Zhang, and B. J. Li, "Periodic dielectric waveguidebased cross- and T-connections with a resonant cavity at the junctions," Optics Communications, Vol. 284, No. 9, 2292-2297, 2011.
doi:10.1016/j.optcom.2011.01.008

15. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Optics Express, Vol. 8, No. 3, 173-190, 2001.
doi:10.1364/OE.8.000173

16. Guo, S. P. and S Albin, "Simple plane wave implementation for photonic crystal calculations," Optics Express, Vol. 11, No. 2, 167-175, 2003.
doi:10.1364/OE.11.000167