Vol. 77
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-08-01
A Balanced Bandpass Filter with Ultra-Wide Stopband and Common-Mode Suppression
By
Progress In Electromagnetics Research Letters, Vol. 77, 123-128, 2018
Abstract
A balanced-to-balanced (BTB) bandpass filter (BPF) with an ultra-wide upper stopband is proposed in this letter. The proposed BPF is fed by balanced stepped-impedance microstrip-to-slotline transition structures. Good differential-mode (DM) transmission and common-mode (CM) suppression can be achieved intrinsically. To achieve good quality in DM passband and out-of-band suppression, a pair of dual-mode resonators has been designed and adopted. Meanwhile, the proposed balanced BPF exhibits an ultra-wide upper stopband of 162.7%. In order to verify the feasibility of the design method, a balanced BPF with a centre frequency of 1.57 GHz has been fabricated and measured. Measured results indicate that the designed filter achieves an out-of-band rejection better than 15 dB from 1.85 to 18 GHz, and the insertion loss (IL) inside the passband less than 1.4 dB. A good agreement between the simulation and measurement results demonstrates the validity of the design.
Citation
Zhi-Jie Yang, Yang-Yang Shan, Xin-Tong Zou, Feng Wei, and Bin Li, "A Balanced Bandpass Filter with Ultra-Wide Stopband and Common-Mode Suppression," Progress In Electromagnetics Research Letters, Vol. 77, 123-128, 2018.
doi:10.2528/PIERL18062508
References

1. Shi, J. and Q. Xue, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Trans. Microw. Theory Techn., Vol. 58, 970-977, 2010.
doi:10.1109/TMTT.2010.2052959

2. Qiang, J., J. Shi, and Q. Cao, "Compact differential wideband bandpass filters based on half-wavelength lines," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 906-908, 2017.
doi:10.1109/LMWC.2017.2747123

3. Shi, J., C. Shao, and J.-X. Chen, "Compact low-loss wideband differential bandpass filter with high common-mode suppression," IEEE Microw. Wirel. Compon. Lett., Vol. 23, 480-482, 2013.
doi:10.1109/LMWC.2013.2274996

4. Malherbe, J. A. G., "Wideband bandpass filter with extremely wide upper stopband," IEEE Trans. Microw. Theory Techn., Vol. 66, 2822-2827, 2018.
doi:10.1109/TMTT.2018.2825342

5. Killamsetty, V. K. and B. Mukherjee, "Miniaturised highly selective bandpass filter with very wide stopband using meander coupled lines," Electron. Lett., Vol. 53, 889-890, 2017.
doi:10.1049/el.2017.1270

6. Li, L., Z. F. Li, and Q. F. Wei, "Compact and selective lowpass filter with very wide stopband using tapered compact microstrip resonant cells," Electron. Lett., Vol. 45, 267-268, 2009.
doi:10.1049/el:20092120

7. Shi, J., L. L. Lin, J.-X. Chen, H. Chu, and X. Wu, "Dual-band bandpass filter with wide stopband using one stepped-impedance ring resonator with shorted stubs," IEEE Microw. Wirel. Compon. Lett., Vol. 24, 442-444, 2014.
doi:10.1109/LMWC.2014.2316259

8. Shi, J. and Q. Xue, "Dual-band and wide-stopband single-band balanced bandpass filters with high selectivity and common-mode suppression," IEEE Trans. Microw. Theory Techn., Vol. 58, 2204-2212, 2010.
doi:10.1109/TMTT.2010.2052959

9. Ma, X., W. Feng, H. Chen, and W. Yang, "Balanced filter with wide stopband using asymmetrical coupled lines," IEEE 2017 Asia Microwave Conference, 638-640, 2017.
doi:10.1109/APMC.2017.8251527