Vol. 81
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-13
Shape Reconstruction of Unknown Targets Using Multifrequency Linear Sampling Method
By
Progress In Electromagnetics Research Letters, Vol. 81, 77-83, 2019
Abstract
This paper aims to estimate the shape of microwave scattering objects using linear sampling method (LSM) with multifrequency data. LSM is a simple, reliable linear inverse algorithm and uses multiview multistatic single frequency scattered field data measured around target objects. Despite its simplicity and computational effectiveness, the output LSM results depend on the frequency of operation. To improve the LSM performance, the present work proposes a new formulation that incorporates frequency information in the LSM equation. As a result, LSM finds the target's shape by a simple solution to a linear inverse problem via multifrequency data. The output results are tested with various types of numerical examples of synthetic data as well as experimental data provided by the Institute of Fresnel.
Citation
Mallikarjun Erramshetty, "Shape Reconstruction of Unknown Targets Using Multifrequency Linear Sampling Method," Progress In Electromagnetics Research Letters, Vol. 81, 77-83, 2019.
doi:10.2528/PIERL18110102
References

1. Pastorino, M., Microwave Imaging, 82-91, Wiley, Hoboken, NJ, USA, 2010.
doi:10.1002/9780470602492

2. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inv. Prob., Vol. 19, 105-137, 2003.
doi:10.1088/0266-5611/19/6/057

3. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704

4. Shelton, N. and K. F. Warnick, "Behavior of the regularized sampling inverse scattering method at internal resonance frequencies," Progress In Electromagnetics Research, Vol. 38, 29-45, 2002.
doi:10.2528/PIER02092502

5. Mallikarjun, E. and A. Bhattacharya, "Shape reconstruction of mixed boundary objects by linear sampling method," IEEE Trans. Antennas Propagat., Vol. 63, No. 7, 3077-3086, 2015.
doi:10.1109/TAP.2015.2426679

6. Sun, J., "An eigenvalue method using multiple frequency data for inverse scattering problems," Inv. Prob., Vol. 28, No. 8, 025012, 2012.
doi:10.1088/0266-5611/28/2/025012

7. Guzina, B., F. Cakoni, and C. Bellis, "On the multi-frequency obstacle reconstruction via the linear sampling method," Inv. Prob., Vol. 26, No. 12, 125005, 2010.
doi:10.1088/0266-5611/26/12/125005

8. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3265-3273, 2008.
doi:10.1109/TGRS.2008.921745

9. Colton, D. and H. Haddar, "An application of the reciprocity gap functional to inverse scattering theory," Inv. Probl., Vol. 21, No. 1, 383-398, 2005.
doi:10.1088/0266-5611/21/1/023

10. Bozza, G., M. Brignone, and M. Pastorino, "Application of the no-sampling linear sampling method to breast cancer detection," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2525-2534, Oct. 2010.

11. Catapano, I. and L. Crocco, "An imaging method for concealed targets," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1301-1309, May 2009.
doi:10.1109/TGRS.2008.2010773

12. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inv. Prob., Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301

13. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inv. Probl., Vol. 21, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09