Vol. 82
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-18
Suppression of Higher Order Modes of a Two Element Microstrip Array Using Open-Ended Stubs
By
Progress In Electromagnetics Research Letters, Vol. 82, 121-128, 2019
Abstract
In this paper suppression of higher order modes of a microstrip antenna array is investigated. The array consists of two radiating elements which are fed by a corporate type microstrip feeding network. They array provides resonance at 5.2 GHz frequency for its fundamental mode (TM10 mode). Beside this fundamental mode, two harmonics at 10.4 GHz (1st harmonic) and 15.05 GHz (2nd harmonic) and few sub-harmonics at 7.8 GHz (TM12), 8.8 GHz (TM22), and 13.3 GHz (TM32) are excited. In order to suppress 1st harmonic, a pair of half wavelength open ended stubs (pair of stub-A) whereas for 2nd harmonic a pair of quarter wavelength open ended stubs (pair of stub-B) are employed. From the simulated results it is noticed that the 1st and 2nd harmonics are successfully suppressed, and the sub-harmonics are also suppressed. Prototypes of the antenna arrays are fabricated and measured. Measured results have good agreement with simulated ones.
Citation
Susmita Biswas, Chandan Kumar Ghosh, Santimoy Mandal, Goffar Ali Sarkar, Soumen Banerjee, and Durbadal Mandal, "Suppression of Higher Order Modes of a Two Element Microstrip Array Using Open-Ended Stubs," Progress In Electromagnetics Research Letters, Vol. 82, 121-128, 2019.
doi:10.2528/PIERL18112108
References

1. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwoord, 2000.

2. Horri, Y. and M. Tsutsumi, "Harmonic control by photonic bandgap on microstrip patch antenna," IEEE Microwave Guided Letters, Vol. 9, 13-15, 1999.
doi:10.1109/75.752109

3. Chandra, U., H. F. AbuTarboush, H. S. Al-Raweshidy, and R. Nilavalan, "Wideband slotted patch antennas using EBG structures," International Workshop on Antenna Technology (iWAT), May 13, 2010.

4. Biswas, S., D. Guha, and C. Kumar, "Control of higher harmonics and their radiations in microstrip antennas using compact defected ground structures," IEEE Transaction on Antennas and Propagation, Vol. 61, 3349-3353, 2013.
doi:10.1109/TAP.2013.2250240

5. Ghosh, C. K., "Harmonic suppression of microstrip antenna by using open ended stubs," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1340-1345, 2016.
doi:10.1002/mop.29809

6. Das Chagas Barbosa de Sena, F. and J. P. da Silva, "Harmonic suppression using optimised hexagonal defected ground structure by genetic algorithm," IET Microwaves, Antennas & Propagation, Vol. 12, No. 10, 1645-1648, 2018.
doi:10.1049/iet-map.2017.0733

7. Elsheakh, D. N., M. F. Iskander, E. A. Abdallah, H. A. Elsadek, and H. Elhenawy, "Microstrip array antenna with new 2d-electromagnetic band gap structure shapes to reduce harmonics and mutual coupling," Progress In Electromagnetics Research C, Vol. 12, 2010.

8. Pandhare, R. A., P. L. Zade, and M. P. Abegaonkar, "Harmonic control by defected ground structure on microstrip antenna array," Indian Journal of Science and Technology, Vol. 8, No. 35, December 2015.
doi:10.17485/ijst/2015/v8i35/79640

9. Pattapu, U., A. Gupta, and S. Das, "A 2.45 GHz harmonic suppression array antenna for rectenna application," 3rd International Conference on Microwave and Photonics, February 2018.

10. Zhang, H., X.-Y. Huang, and H.-Y. Xu, "Spurious modes reduction in a patch antenna using an EBG-based microstrip transmission line filter," Progress In Electromagnetics Research C, Vol. 25, 41-54, 2012.
doi:10.2528/PIERC12041618

11. Abbasiniazare, S., K. Forooraghi, A. Torabi, and O. Manoochehri, "Mutual coupling compensation for a 1 × 2 short helical antenna array using split-ring resonators," Electromagnetic Waves and Applications (Taylor & Francis), Vol. 33, 1-9, DOI: 10.1080/02726343.2013.751005, 2013.

12. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley, Hoboken, NJ, 2016.