Vol. 82
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-15
A Novel Ultra-Wideband Design of Ridged SIW Magic-T
By
Progress In Electromagnetics Research Letters, Vol. 82, 113-120, 2019
Abstract
In order to obtain a wideband sum-and-difference network, a novel ridged substrate integrated waveguide (RSIW) magic-T is designed. The proposed magic-T is composed of a five-layer RSIW structure. The signal input from the coaxial H-plane port is transmitted to RSIW through a stripline and split into two in-phase and equal signals at the output ports on the top and bottom layers because of the vertically symmetric structure. An E-plane SIW power divider is utilized to realize the E-plane input/output port of the magic-T. A remarkable bandwidth improvement is achieved due to the ridged structure and the wide bandwidth of a ladder-shape stripline optimized by genetic algorithm (GA). Measured results indicate that the magic-T has a fractional bandwidth (FBW) of 78.7% (6.4-14.7 GHz) with return loss better than 18.1 dB and great isolation characteristics.
Citation
Jia Wang, and Tianqing Ling, "A Novel Ultra-Wideband Design of Ridged SIW Magic-T," Progress In Electromagnetics Research Letters, Vol. 82, 113-120, 2019.
doi:10.2528/PIERL18112201
References

1. Chiang, C.-T. and B.-K. Chung, "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research, Vol. 106, 61-73, 2010.
doi:10.2528/PIER10061603

2. Marynowski, W. and J. Mazur, "Investigation of multilayer magic-T configurations using novel microstrip-slotine transitions," Progress In Electromagnetics Research, Vol. 129, 91-108, 2012.
doi:10.2528/PIER12032303

3. Khatib, B. Y. E., T. Djerafi, and K. Wu, "Substrate-integrated waveguide vertical interconnects for 3-D integrated circuits," IEEE Trans.Compon.Packag. Manuf. Technol., Vol. 2, 1526-1535, Sep. 2012.
doi:10.1109/TCPMT.2012.2196516

4. Zheng, C. and F. Xu, "A Compact Planar Magic-T Using One-Third Triangular Resonator of Substrate Integrated Waveguide and Slotline Transition," Microwave Symposium, 1-4, Jul. 2015.

5. Wu, H. C. and W. B. Dou, "A rigorous analysis and experimental researches of waveguide magic Tee at W band," Progress In Electromagnetics Research, Vol. 60, 131-142, 2006.
doi:10.2528/PIER05112904

6. Hwang, K. C., "Design and Optimization of a Broadband Waveguide Magic-T Using a Stepped Conducting Cone," IEEE Microwave and Wireless Components Letters, Vol. 19, 539-541, Sep. 2009.
doi:10.1109/LMWC.2009.2027052

7. Leal-Sevillano, C. A., J. A. Ruiz-Cruz, J. R. Montejo-Garai, et al. "Compact broadband couplers based on the waveguide magic-T junction," 2013 European Microwave Conference, Oct. 2013.

8. Carl Kim, J. P. and W. S. Park, "Novel configurations of planar multilayer magic-t using microstrip-slotline transitions," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1683-1688, Jul. 2002.

9. Henin, B. and A. Abbosh, "Wideband hybrid using three-line coupled structure and microstrip-slot transitions," IEEE Microwave and Wireless Components Letters, Vol. 23, 335-337, Jul. 2013.
doi:10.1109/LMWC.2013.2262930

10. He, F. F., K. Wu, W. Hong, L. Han, and X. Chen, "A planar magic-T structure using substrate integrated circuits concept and its mixer applications," IEEE Trans. Microw. Theory Tech., Vol. 59, 72-79, Feb. 2011.
doi:10.1109/TMTT.2010.2091195

11. Cheng, Y. J. and Y. Fan, "Compact substrate-integrated waveguide bandpass rat-race coupler and its microwave applications," IET Microw. Antennas Propag., Vol. 6, 1000-1006, Jun. 2012.
doi:10.1049/iet-map.2012.0011

12. Peng, L., H. Chu, and R. S. Chen, "SIW magic-T with bandpass response," Electronics Letters, Vol. 51, 1078-1080, 2015.
doi:10.1049/el.2015.0640

13. He, Y. J., D. Y. Mo, Q. S. Wu, and Q. X. Chu, "A Ka-band waveguide magic-T with coplanar arms using ridge-waveguide transition," IEEE Microwave & Wireless Components Letters, Vol. 27, 965-967, 2017.
doi:10.1109/LMWC.2017.2750020

14. Rosenberg, U., M. Salehi, J. Bornemann, and E. Mehrshahi, "A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology," IEEE Microw. Wirel. Compon. Lett., Vol. 23, 406-408, 2013.
doi:10.1109/LMWC.2013.2269039

15. Huang, J., G. Hua, B. Cao, and F. Ran, "A 34.5 GHz planar magic-T based on coupling slot and substrate integrated waveguide," 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-3, Oct. 2016.

16. Yang, L., F. Xu, S. Deng, and S. Liu, "A compact planar magic-T using quarter-mode substrate integrated waveguide resonator and slotline coupling transition," 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-3, Oct. 2016.

17. Germain, S., D. Deslandes, and K. Wu, "Development of substrate integrated waveguide power dividers," IEEE Electr. Comput. Eng., Vol. 3, 1921-1924, May 2003.

18. He, F. F., K. Wu, W. Hong, H. J. Tang, H. B. Zhu, and J. X. Chen, "A planar magic-T using substrate integrated circuits concept," IEEE Microwave & Wireless Components Letters, Vol. 18, 386-388, 2008.
doi:10.1109/LMWC.2008.922596

19. Feng, W. J., W. Q. Che, and K. Deng, "Compact planar magic-T using E-plane substrate integrated waveguide (SIW) power divider and slotline transition," IEEE Microwave & Wireless Components Letters, Vol. 20, 331-333, 2010.
doi:10.1109/LMWC.2010.2047519

20. Zhu, F., W. Hong, J.-X. Chen, and K. Wu, "Design and implementation of a broadband substrate integrated waveguide magic-T," IEEE Microwave & Wireless Components Letters, Vol. 22, 630-632, 2012.
doi:10.1109/LMWC.2012.2226936

21. Li, C., W. Che, P. Russer, and Y. L. Chow, "Propagation and a band broadening effect of planar ridged substrate-intergrated waveguide (RSIW)," ICMMT2008 Proceedings, Vol. 2, 467-470, 2008.

22. Li, L., X. Liang, Y. Zhang, X.Wang, et al. "Propagation characteristic of ridge substrate integrated waveguide," 2016 IEEE International Conference on Integrated Circuits and Microsystems, 195-199, 2016.

23. Somlo, P. I., "The computation of coaxial line step capacitances," IEEE Trans. Micro. Theory Tech., Vol. 15, No. 1, Jan. 1967.
doi:10.1109/TMTT.1967.1126368

24. Sahu, A., R. Mishra, and P. Aaen, "Recent advances in the theory and applications of substrate-integrated waveguides," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, 129-145, 2016.
doi:10.1002/mmce.20946