Vol. 86

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Mach-Zehnder Interferometry Method for the Measurement of Photonic State Squeezing in Quantum Cavities

By Siamak Khademi, Ghasem Naeimi, and Ozra Heibati
Progress In Electromagnetics Research Letters, Vol. 86, 43-51, 2019


Recently, manipulation and measurement of quantum states, especially in quantum cavities, have attracted the attention of many researchers in different fields, such as: quantum optics, quantum information, quantum computation, and so on. In this paper a non-demolition method for the measurement of squeezing parameter via atomic Mach-Zehnder interferometer, is presented. An experimental setup was also proposed which included two quantum cavities, in different arms of an atomic Mach-Zehnder interferometer. Each quantum cavity was settled between two classical cavities. Quantum cavities were contained entangled states with arbitrary squeezed photons. It is shown that the outgoing atomic states of Mach-Zehnder interferometer carry on the properties and situation of quantum states of the cavities. The squeezing parameter of photonic state forone of cavities, is obtained by the detection of excited and non-excited probabilities of Mach-Zehnder interferometer's outgoing ports, for a train of incoming two-level Rydberg atoms.


Siamak Khademi, Ghasem Naeimi, and Ozra Heibati, "A Mach-Zehnder Interferometry Method for the Measurement of Photonic State Squeezing in Quantum Cavities," Progress In Electromagnetics Research Letters, Vol. 86, 43-51, 2019.


    1. Einstein, B. P. and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev., Vol. 47, 777, 1935.

    2. Bohr, N., "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev., Vol. 48, 696-702, 1935.

    3. Sadeghi, P., S. Khademi, and S. Nasiri, "Nonclassicality indicator for the real phase-space distribution function ," Phys. Rev. A, Vol. 82, 012102, 2010.

    4. Naeimi, G., S. Alipour, and S. Khademi, "A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type atoms," Springer Plus, Vol. 5, 1402, 2016.

    5. He, X. L., Q. P. Su, F. Y. Zhang, and C. P. Yang, "Generating multipartite entangled states of qubits distributed in different cavities," Quantum Information Processing, Vol. 13, 1381-1395, 2014.

    6. Shahidani, S., M. H. Naderi, M. Soltanolkotabi, and S. Barzanjeh, "Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity," JOSA B, Vol. 31, 1087-1095, 2014.

    7. Khademi, S., G. Naeimi, and O. Heibati, "A simple scheme for generation of N-qubits entangled stated," Applied Mathematics and Physics, Vol. 2, 1-3, 2014.

    8. Xiong, W. and L. Ye, "Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity," JOSA B, Vol. 28, 2030-2037, 2011.

    9. Wolters, J., J. Kabuss, A. Knorr, and O. Benson, "Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities," Phys. Rev. A, Vol. 89, 060303(R), 2014.

    10. Kaiser, F., L. A. Ngah, A. Issautier, T. Delord, D. Aktas, V. DAuria, M. P. De Micheli, A. Kastberg, L. Labonte, O. Alibart, A. Martin, and S. Tanzilli, "Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry," Optics Communications, Vol. 327, 7-16, Special Issue on Nonlinear Quantum Photonics, 2014.

    11. Schliemann, J., "Entanglement thermodynamics," J. Stat. Mech., P09011, 2014.

    12. Brune, M., S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, "Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of ``Schrödinger cat” states," Phys. Rev. A, Vol. 45, 5193, 1992.

    13. Raimond, J. M., M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys., Vol. 73, 565, 2001.

    14. Khademi, S. and S. Alipour, "A non-demolition photon counting method by four-level inverted Y-type atom," International Journal of Optics and Photonics, Vol. 11, 63-74, 2017.

    15. Bussieres, F., C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, "Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory," Nature Photonics, Vol. 8, 775-778, 2014.

    16. Luda, M. A., M. A. Larotonda, J. P. Paz, and C. T. Schmiegelow, "Manipulating transverse modes of photons for quantum cryptography," Phys. Rev. A, Vol. 89, 042325, 2014.

    17. Sridhar, N., R. Shahrokhshahi, A. J. Miller, B. Calkins, T. Gerrits, A. Lita, S. W. Nam, and O. Pfister, "Direct measurement of the Wigner function by photon-number-resolving detection," JOSA B, Vol. 31, B34-B40, 2014.

    18. Banaszek, K., C. Radzewicz, K. Wodkiewicz, and J. S. Krasinski, "Direct measurement of the Wigner function by photon counting," Phys. Rev. A, Vol. 60, 674-677, 1999.

    19. Naeimi, G., S. Khademi, and O. Heibati, "A method for the measurement of photons number and squeezing parameter in a quantum cavity," ISRN Optics, 271951, 2013.

    20. Zheng, S. B., "Quantum-information processing and multiatom-entanglement engineering with a thermal cavity," Phys. Rev. A, Vol. 66, 060303(R), 2002.

    21. Li, W. and I. Lesanovsky, "Entangling quantum gate in trapped ions via Rydberg blockade," Applied Physics B, Vol. 114, 37-44, 2014.

    22. Johansen, L. M., "Bell’s inequality for the Mach-Zehnder interferometer," Phys. Lett. A, Vol. 21, 15-18, 1996.

    23. Kang, K. and K. H. Lee, "Violation of Bell’s inequality in electronic Mach-Zehnder interferometers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, 1395-1397, 2008.

    24. Ji, Y., Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, "An electronic Mach-Zehnder interferometer," Nature, Vol. 422, 415-418, 2003.

    25. Seigneur, H. P., M. N. Leuenberger, and W. V. Schoenfeld, "Single-photon Mach-Zehnder interferometer for quantum networks based on the single-photon Faraday effect," J. Appl. Phys., Vol. 104, 014307, 2008.

    26. Carlos Ryff, L. and P. H. Souto Ribeiro, "Mach-Zehnder interferometer for a two-photon wave packet," Phys. Rev. A, Vol. 63, 023801, 2001.

    27. Vyshnevyy, A. A., G. B. Lesovik, T. Jonckheere, and T. Martin, "Setup of three Mach-Zehnder interferometers for production and observation of Greenberger-Horne-Zeilinger entanglement of electrons," Phys. Rev. B, Vol. 87, 165417, 2013.

    28. Nady Abdul Aleem, M., K. F. A. Hussein, and A.-E.-H. A.-E.-A. Ammar, "Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Progress In Electromagnetics Research B, Vol. 54, 69-88, 2013.

    29. Dimitriadou, E. and K. E. Zoiros, "On the feasibility of 320 GB/S all-optical and gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Progress In Electromagnetics Research B, Vol. 50, 113-140, 2013.

    30. Gerry, C. and P. Knight, Introductory Quantum Optics, University Press, Cambridge, 2004.

    31. Scully, M. O. and M. S. Zubairy, Quantum Optics, University Press, Cambridge, 1997.