Vol. 89
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-22
A Broadband Microstrip-to-Waveguide End-Wall Probe Transition and Its Application in Waveguide Termination
By
Progress In Electromagnetics Research Letters, Vol. 89, 99-104, 2020
Abstract
A broadband microstrip-to-waveguide end-wall probe transition using a semicircular loop is proposed in this letter. The simulated 20-dB fractional bandwidth for this transition is 48.3% which could cover the whole Ka-band. Then, a compact broadband waveguide termination is developed by combination of this microstrip-to-waveguide transition and a 50 Ω microstrip termination. To reduce parasitic effects, the microstrip termination is grounded by a microstrip radial stub. The fabricated waveguide termination shows a compact size and has a return loss better than 16.6 dB from 26 to 40.8 GHz.
Citation
Cong Tang, Xiaofeng Pan, Fei Cheng, and Xianqi Lin, "A Broadband Microstrip-to-Waveguide End-Wall Probe Transition and Its Application in Waveguide Termination," Progress In Electromagnetics Research Letters, Vol. 89, 99-104, 2020.
doi:10.2528/PIERL19110601
References

1. Pozar, D. M., Microwave Engineering, Wiley, New York, 2005.

2. Hoover, J. C. and R. E. Tokheim, "Microstrip transmission-line transitions to dielectric-filled waveguide," IEEE Trans. Microw. Theory Tech., Vol. 15, No. 4, 273-274, Apr. 1967.
doi:10.1109/TMTT.1967.1126446

3. Oh, H. S. and K. W. Yeom, "A full Ku-band reduced-height waveguide-to-microstrip transition with a short transition length," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 9, 2456-2462, Sep. 2010.
doi:10.1109/TMTT.2010.2058251

4. Haseker, J. S. and M. Schneider, "90 degree microstrip to rectangular dielectric waveguide transition in the W-band," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 416-418, Jun. 2016.
doi:10.1109/LMWC.2016.2558640

5. Aliakbarian, H., A. Enayati, G. A. E. Vandenbosch, and W. de Raedt, "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805

6. Kaneda, N., Y. Qian, and T. Itoh, "A broadband microstrip-to-waveguide transition using quasi- Yagi antenna," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 12, 2562-2567, Dec. 1999.
doi:10.1109/22.809007

7. Huang, X. and K. L. Wu, "A broadband U-slot coupled microstrip-to-waveguide transition," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, 1210-1217, May 2012.
doi:10.1109/TMTT.2012.2187677

8. Chuang, J. K., R. Y. Fang, and C. L. Wang, "Compact and broadband microstrip-to-waveguide transition using antisymmetric tapered probes," Electron. Lett., Vol. 48, No. 6, 332-333, Mar. 2012.
doi:10.1049/el.2011.3673

9. Fang, R. Y. and C. L. Wang, "Miniaturized microstrip-to-waveguide transition using capacitancecompensated broadside-coupled microstrip line," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 9, 1588-1596, Sep. 2013.
doi:10.1109/TCPMT.2013.2244644

10. Jokanovic, B. and D. Markovic, "Wideband microstrip-to-waveguide transition using double-Y balun," Electron. Lett., Vol. 42, No. 18, 1043-1044, Aug. 2006.
doi:10.1049/el:20061769

11. Zhang, Y. C., J. A. Ruiz-Cruz, K. A. Zaki, and A. J. Piloto, "A waveguide to microstrip inline transition with very simple modular assembly," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 480-482, Sep. 2010.
doi:10.1109/LMWC.2010.2056358

12. Risacher, C., V. Vassilev, A. Pavolotsky, and V. Belitsky, "Waveguide-to-microstrip transition with integrated bias-T," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 7, 262-264, Jul. 2003.
doi:10.1109/LMWC.2003.815182

13. Arbaoui, Y., V. Laur, A. Maalouf, et al. "Full 3-D printed microwave termination: A simple and low-cost solution," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 1, 271-278, Jan. 2016.
doi:10.1109/TMTT.2015.2504477

14. Monge, F. J., J. Esteban, and J. Zapata, "Finite elements and evolution programs for the CAD of broadband rectangular-waveguide H-plane matched loads," Microw. Opt. Technol. Lett., Vol. 31, No. 6, 491-494, 2001.
doi:10.1002/mop.10070

15. Stander, T., P. W. van derWalt, and P. Meyer, "A comparison of simple low-power wedge-type X-band waveguide absorbing load implemen-tations," AFRICON 2007, 1-4, Windhoek, Namibia, Sep. 2007.

16. Komarov, V. V., V. P. Meschanov, and N. F. Popova, "Short waveguide load for millimetre-wave applications," Electron. Lett., Vol. 52, No. 5, 378-379, 2016.
doi:10.1049/el.2015.4214

17. Li, J., G. Wen, Y. Huang, P. Wang, and Y. Sun, "Research of metamaterial absorbers and their rectangular waveguide matching terminal applications based on the electric resonators," Acta. Phys. Sin., Vol. 62, No. 8, 087801-1-087801-7, 2013.

18. Vishay Intertechnology "High frequency (up to 40 GHz) resistor, thin film surface mount chip,", http://www.vishay.com/doc?60093, Feb. 17, 2008.